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Autism Spectrum Disorder (ASD)
Autism Spectrum Disorder (ASD) diagnosis is increasing with

approximately 1/68 children in the United States diagnosed with an
ASD [1]. A recent survey of parents indicated that this number may be
as high as 1/50 [2]. ASDs are approximately 4.5 times more prevalent
in boys than girls [3]. ASDs are characterized by impaired social
interactions, communication deficits and repetitive/stereotyped
behavior [4,5]. Numerous susceptibility genes have been identified for
ASDs, making them highly heritable disorders [6]. Many of these genes
are involved in nervous system development and neurotransmitter
systems [6]. Despite the numerous genetic studies performed, the
causes of ASD are still poorly understood and current treatments are
limited to behavioral interventions once problems have been detected
[7,8]. Early detection is highly desirable to promote early behavioral
interventions and more functional outcomes [9]. Although genomic
studies provide clues to causes of ASD, analysis of gene products, such
as proteins, should ideally be performed for comprehensive
understanding of ASD [7]. Preliminary proteomic investigations have
reported potential links to cholesterol dysregulation and
immunological responses present in individuals with ASD [10-13].
These proteomic dysregulations could potentially be in response to
certain environmental toxins, which could play a role in ASD causality
[14-16]. Here we will discuss the possible genetic, proteomic and
environmental contributions to this complex disorder.

Genetic Analysis of ASD
It is known that ASD is highly heritable. The risk of ASD occurring

in a sibling of an autistic person is over 20 times greater than the risk
for the general population and increases to 200 times greater in
identical twins [17]. Numerous methods have been employed to try to
determine ASD susceptibility genes which include chromosomal
studies, linkage studies and gene association studies [8]. Candidate
autism susceptibility genes have been identified at multiple loci, most
consistently on chromosomes 2q, 7q, 15q [11-13], 17q and 16p with
the most consistent positive results coming from 7q [18,19]. Although
the numerous genetic studies conducted on ASD have been successful
in identifying potential chromosomal abnormalities, truncations and
missense mutations, the detection of the specific genetic variants
responsible for ASD have been mostly elusive, likely due to the high
genetic complexity and probable heterogeneity of the disorder [8].
Notably, a recent study provided the first clear link to a subtype of
autism and a specific genetic mutation in the CHD8 gene [20],
indicating that more progress may follow in the genetic understanding
of other subtypes of ASD.

Proteomic Analysis of ASD
There are many reports of protein alterations in people with ASD

which have led to investigations of the potential of protein biomarkers
for use in early diagnosis. Two hypothetical dysregulated systems in
individuals with ASD include cholesterol and associated molecules and
the immune system. Studies have shown increased levels of two
apolipoproteins, apoA1 and apoA4, responsible for lipid transport, in
people with ASD compared to matched controls [13,21]. Autism is a
common comorbidity for Smith-Lemli Opitz Syndrome (SLOS). SLOS
is a genetic syndrome characterized by cholesterol dysregulation
initiated by deficient activity of 7-dehydrocholesterol reductase [22].
The presence of autism in SLOS supports the idea that lipid associated
pathways may be disrupted in ASD [17,23]. There has also been
evidence of increased levels of serum paraoxanase/arylesterase 1
(PON1), which is involved in toxin metabolism and detoxification, and
could help prevent oxidative stress [13]. Interestingly, PON1 is a
component of high density lipoprotein (HDL) [24], further attesting to
possible lipid disturbances in ASD. The presence of elevated PON1 also
supports the concept that people with ASD may have increased levels
of oxidative stress compared to the general population.

Environmental Influences on ASD
Along with genetic factors, environmental factors may play a role

in causing ASD, due to the delicate sensitivity of the developing human
brain to toxic chemicals [18,25]. Autistic children show signs of
oxidative stress [26] and impaired methylation [25]. These may reflect
effects of toxic exposure. When exposed to oxidative stressors
temporarily, normally sulfur metabolism and epigenetic patterns are
allowed to return back to normal. However, prolonged exposure to
heavy metals and xenobiotics can lead to long-lasting adaptive
epigenetic responses which may in turn reflect by an individual’s
genetic background and their risk for certain disorders, such as ASD
[25].

It has been suggested that certain pesticides may be capable of
producing core autism features due to their chemical compositions and
toxicity. There is increasing information in this area, and further
studies into the timing, dosage or mechanisms that actually induce the
condition are needed [16]. Recently, results of the Childhood Autism
Risks from Genetics and Environment (CHARGE) study indicated that
prenatal close proximity to organophosphates was associated with a
60% increased risk for ASD. The risk increased for 3rd trimester
exposure. More research into pesticides and autism is needed [15].

PON1 is a marker for organophosphate pesticide exposure [27] and
as mentioned, may be elevated in individuals with ASD [13]. PON1
enzyme activity has been observed to be low in some individuals with
autism [28,29] and gene mutations in PON1 are associated with autism
in the United States (where there is more pesticide use) but not in Italy
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[27]. This suggests that PON1 may be a marker for increased pesticide
exposure in autism, but also that deficient or defective PON1 activity
may predispose to ASD. It also suggests a model for gene-environment
interactions in ASD causality.

Conclusions
ASD is very complex and cannot be characterized by one method

alone. Proteomic, genetic and environmental links may all contribute
to the disorder and are interactive, not mutually exclusive. Several
studies have found proteins involved in cholesterol dysregulation and
oxidative stress/immune responses to be differentially expressed in
individuals with ASD. Numerous genetic investigations have been
made as well in which there have been many chromosomal
abnormalities along with mutations that have been detected in people
with ASD. However, none of these genetic differences provide enough
evidence to conclude that the disorder is genetic alone. Environmental
factors, including exposure to certain pesticides and long term
exposure to toxic chemicals, may increase risk for autism, in
collaboration with susceptibility genes. Further investigation using
multiple perspectives, will shed light on the causes of ASD.
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