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Introduction
Hemophilia A is an X-linked, recessive bleeding disorder that 

affects approximately 1 in 5000 males. This disease is caused by 
hereditary defects in factor VIII (fVIII) [1]. Clinically, it is characterized 
by frequent and spontaneous joint hemorrhages, easy bruising and 
prolonged bleeding. The consequences of bleeding into critical closed 
spaces, such as the intracranial or the retroperitoneal space, are severe 
and potentially life-threatening. The severity of clinical symptoms 
is directly related to the coagulation activity of FVIII (<1%, severe; 
2-5%, moderate; and 5-30%, mild). Approximately 50% of all cases are 
classified as severe [2]. 

Gene therapy has the potential to overcome some of the 
shortcomings associated with conventional protein replacement 
therapy for hemophilia A. Not only can it eliminate the risk of 
infectious diseases, but the appropriate vector can maintain long term 
gene expression and eliminate the need for repeated treatments. In 
addition, gene therapy may be more likely to avoid the formation of 
significant titers of neutralizing antibodies. Evidence shows that daily 
infusions with high doses of clotting factor concentrate can eliminate 
neutralizing antibodies among 70-90% of patients. The continuous 
production of clotting factors from a rAAV-delivered transgene may 
similarly limit the formation of these neutralizing antibodies [3-6]. 

The fVIII protein is a particularly challenging target for gene 
therapy. The coding region of full length fVIII is approximately 7.0 
kb. The translated FVIII protein is a 2,351 aa single-chain glycoprotein 
of 280 kDa, which is predominately synthesized and secreted by the 
hepatocytes or sinusoidal endothelial cells in the liver [1]. This protein 
has six domains following its signal peptide (A1-A2-B-A3-C1-C2), in 
which the B domain has no effect on FVIII activity in in vitro or in vivo 
assays [7,8]. The human B-domain deleted fVIII DNA is 4371 bp in 
length. The large cDNA size, short half-life and strong immunogenecity 
make it difficult to achieve sustained therapeutic levels of gene 
expression in vivo. Even though the results from hemophilia B gene 
therapy clinical trials are encouraging [9,10], the prospect of curing 
hemophilia A using a gene therapy approach does not appear to be 
imminent. 

A variety of vectors have been explored for delivering the fVIII gene 
for treating hemophilia, which include both non-viral and viral vectors. 

Viral vectors that have been explored include adenovirus, retrovirus, 
lentiviral vectors and adeno-associated virus (AAV) vectors [11-16]. 
The results from these pioneering studies suggest that the sustained 
expression of therapeutic levels of fVIII in a hemophilic animal model 
necessitates improvements not only on delivering vectors but also the 
fVIII gene itself. In this review, a variety of bioengineering approaches 
exploited to enhance the fVIII transgene and transgene products will 
be discussed. These approaches hold significant potential to maximize 
the expression of the therapeutic products. 

Engineering fVIII with enhanced expression

Synonymous mutations (mutations that alter the coding DNA 
and RNA sequence without affecting the amino acid sequence of the 
underlying protein), i.e codon optimization, is a powerful approach 
for enhancing gene expression in mammalian systems. The benefits of 
codon optimization have been previously reviewed [17]. By optimizing 
the codons for a cDNA encoding the therapeutic protein, a higher level 
of expression may be achieved from two different mechanisms. First, it 
may increase transcriptional efficacy. GC content, CpG dinucleotides 
content, cryptic splicing sites, negative CpG islands, Shine-Dalgarno 
sequence codon-context, TATA boxes and terminal signals can all be 
optimized to increase transcriptional efficacy. Second, it may enhance 
the translation efficiency. Codon usage bias, GC content, mRNA 
secondary structure, premature polyA sites, RNA instability motif 
(ARE), stable free energy of mRNA, internal chi sites and ribosomal 
binding sites are known factors that can affect translation efficiency. 
Therefore, codon optimization which reduces the complications 
associated with these issues will increase therapeutic gene expression.
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Abstract
Current treatment of hemophilia A by intravenous infusion of factor VIII (fVIII) concentrates is very costly and has 

a potential adverse effect of developing inhibitors. Gene therapy, on the other hand, can potentially overcome these 
limitations associated with fVIII replacement therapy. Although hemophilia B gene therapy has achieved promising 
outcomes in human clinical trials, hemophilia A gene therapy lags far behind. Compared to factor IX, fVIII is a 
large protein which is difficult to express at sustaining therapeutic levels when delivered by either viral or non-viral 
vectors. To improve fVIII gene delivery, numerous strategies have been exploited to engineer the fVIII molecule 
and overcome the hurdles preventing long term and high level expression. Here we reviewed these strategies, and 
discussed their pros and cons in human gene therapy of hemophilia A.
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Codon optimization for fVIII has been attempted by two different 
groups [18,19]. Radcliffe et al reported that codon optimization of the 
fVIII nucleic acid sequence increases lentiviral vector titre and transgene 
expression [18]. Codon-optimizing of the BDD fVIII gene increased 
the vector titer modestly by 2-3 fold. In contrast, codon optimization 
of the full-length fVIII gene improved vector titre by approximately 
one order of magnitude. There were also substantial increases in 
transgene expression per integrated vector copy. In a separate study, 
it was shown that a different codon-optimized construct led to a 29- 
to 44-fold increase in expression of fVIII in neonatal hemophilia mice 
with lentiviral vectors [19]. The protein level can reach more than 
200% of the normal human fVIII levels in animal sera. There may be a 
difference with the algorithm used for codon optimization in these two 
studies. Based on the enhancing mechanisms associated with codon 
optimization, it should be useful universally for any gene therapy 
vector. 

Engineering fVIII with higher specific activity 

Due to the limitations of transfer vectors it is desirable to achieve 
a higher coagulation activity out of the limited therapeutic protein 
that can be expressed. Therefore, engineered fVIII with higher specific 
activity may lower the vector doses needed in a clinical setting. Fay’s 
group reported that replacement of individual charged residues (D519, 
E665 or E1984) with either Ala or Val increased procofactor stability 
at elevated temperature and cofactor stability over an extended time 
course [20]. Variants with mutations at D519 and either E665 or E1984 
exhibited significantly better stability over single mutants [21]. Other 
fVIII muteins that prevent the dissociation of the A2 subunit in the 
activated fVIII (fVIIIa) heterotrimer have been shown to possess 
enhanced cofactor stability. Mutein fVIII IR8 was generated by deleting 
residues from aa 795–1689 and including Arg-336-Ile, Arg-562-Lys 
and Arg-740-Ala mutations [22]. Since the A2 domain is covalently 
attached to the light chain, these mutations resulted in an inactivation-
resistant coagulation fVIIIa. IR8 exhibited approximately 5-fold higher 
specific activity than wild-type fVIII. The deletion in the ar3 region of 
fVIII leads to a 10-fold weaker affinity for VWF, which may affect its 
serum half-life. However, the efficacy of IR8 was inconsistent in vivo 
when delivered using platelets as a delivery vehicle in the bleeding 
models [23]. Therefore, its usefulness in gene therapy needs to be 
further evaluated. 

Activated fVIII (fVIIIa) typically has a very short half-life, partly 
due to spontaneous dissociation of the A2 domain from the fVIIIa 
heterotrimer [24]. Disulfide bridges covalently linking the A2 subunit 
within fVIIIa have also been explored to enhance fVIII specific activity. 
As reported by Gale et al, changes in C664 in A2 and C1826 in A3 could 
allow a disulfide bond to be established between these two amino acids 
[25]. Similarly, an engineered disulfide bond can be formed between 
C662–C1828 in fVIIIa [26]. C662–C1828 fVIIIa had normal activity in 
FX activation while C664–C1826 fVIIIa had reduced activity. They also 
exhibited approximately a 50%~100% higher specific activity than wild 
type (wt) fVIII. Both disulfide bond-stabilized variants show improved 
affinity for von Willebrand factor (VWF), which may suggest a longer 
plasma half-life. These variants had approximately a 5-fold increase in 
half-life relative to wt fVIIIa during clot formation when reconstituted 
in whole blood [27].

It has been previously demonstrated that fVIII from species other 
than human can exhibit a higher specific activity than their human 
counterpart. The recombinant B-domain–deleted canine fVIII showed 
a 3-fold increased specific activity over that of human BDD-fVIII 

[28,29]. A hybrid of canine and human fVIII that retains the higher 
specific activity of canine fVIII may be useful for human gene therapy.

Most of the above modifications altered the codons of the fVIII 
molecules in order to achieve the improved specific activities. However, 
one main concern is whether or not such changes increase inhibitor 
formation when these modified fVIII proteins are expressed in human 
patients. Whether or not the alterations give rise to better candidates 
for gene therapy remains to be confirmed. 

Engineering fVIII with enhanced secretion 

After fVIII synthesis, the fVIII protein is transported to the lumen 
of the endoplasmic reticulum (ER). In the ER, the fVIII protein is 
associated with several protein chaperones including immunoglobin 
binding protein (BiP), calnexin and calreticulin [30,31]. The release of 
fVIII from BiP is an ATP dependent process, which is one of the limiting 
factors for efficient fVIII secretion. Both calnexin and calreticulin 
enhance fVIII secretion and degradation. LMAN1(ERGIC-53) is a 
chaperone protein in the ER-Golgi intermediate compartment that 
is required for efficient fVIII and V secretion [32]. Post-translational 
modifications of fVIII take place in the ER and Golgi apparatus, 
including N-, O-linked glycosylation and sulfation of tyrosine residues 
of the heavy chain and light chain. Those modifications are important 
for proper folding that leads to full procoagulant activity and its 
interaction with von Willebrand factor [33,34]. The mis-folded fVIII 
is degraded in the ER and the correctly processed fVIII molecules 
enter the Golgi apparatus [35]. Additional studies have demonstrated 
that fVIII secretion is affected by the oligosaccharide content in the 
B domain. Pipe’s group showed that addition of the first 226 amino 
acid residues with six potential asparagine-linked glycosylation sites 
(N6) increases the secretion of fVIII by 10-fold while maintaining the 
same mRNA level as B-domain deleted fVIII [30,35]. Analysis of the 
differences between human and porcine fVIII suggested amino acids 
in the A1 and apA3 domain are key determinants of fVIII efficient 
secretion [36]. Factor VIII with F309S mutation and N6 have been 
reported to increase the antigen secretion significantly [37]. However, 
it was found that there was no significant improvement when delivered 
by lentiviral vectors in a different setting [19,38]. In another study, it 
also did not show an effect on fVIII heavy chain secretion [39].

Recombinant porcine fVIII secretes 10-100 fold better than human 
fVIII [40]. Hybrid human/porcine fVIII was shown to express up to 
100-fold greater than human fVIII [40,41]. Although the specific 
activity of plasma-derived porcine fVIII is generally low at ~100U/mg, 
the specific activity differences between highly purified recombinant 
porcine fVIII (~12,400U/mg) and human fVIII (4000-10000U/mg) 
are insignificant [40,42]. There is no loss of specific activity with the 
chimeric ET-801i, which is 88% identical to human BDD fVIII at the 
protein level. Human cells transduced with lentiviral vectors encoding 
ET-801i demonstrated an expression level that was 16~160 fold higher 
than that of human fVIII [43]. The chimeric porcine and human fVIII 
may be useful in correcting bleeding phenotype in a special group of 
patients.

Secretory signal peptides (SP) play a critical role in mediating 
eukaryotic protein secretion. The hidden Markov model (HMM) 
provides a protocol to describe and predict relative strengths of secretory 
signals [44]. Based on this model, the SP-HMM bit score of fVIII is 
low at 12.5 when compared to the commonly known apolipoprotein 
C which has an HMM score of 20.9. We explored the possibility of 
using a high HMM score signal peptide to increase fVIII secretion. In 
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the results summarized in figure 1, even synthetic signal peptides with 
HMM score as high as 34 and 38 did not increase fVIII secretion over the 
endogenous fVIII signal peptide. Signal peptides from apolipoprotein 
C-III (HMM score 20.9), alpha-1-antichymotrypsin (HMM score 19.1) 
also performed poorly. The signal peptide from albumin (HMM score 
18.7) failed to mediate fVIII secretion at all (data not shown). Based 
on this information, we concluded that the endogenous fVIII signal 
peptide is actually the most potent one at directing fVIII secretion.

Engineering fVIII with prolonged plasma circulation half-life 

Intracellular proteolytic processing within the B domain generates 
one light chain, approximately 80 kDa composed of A3-C1-C2 
domains, and one heavy chain containing A1-A2-B domains ranging 
in size from 90-200 kDa. The heavy and light chains are associated as a 
heterodimer through a divalent metal-ion-dependent linkage between 
the A1 and A3 domains. Factor VIII circulates in the human blood 
with a very short plasma half-life without vWF co-factor. Once fVIII is 
noncovalently associated with vWF to form a complex, the half-life of 
fVIII in plasma can be extended from 2 to 12 hours [33,34]. 

Factor VIII with a longer half-life will be highly desirable for 
maintaining therapeutic levels. Pegylation is a common strategy for 
increasing in vivo half-life of a protein [45]. However, it doesn’t have 
an impact on a gene delivery strategy because of the requirement for 
a chemical conjugation reaction. An alternative approach is to take 
advantage of the exceptionally long circulation half-life of serum 
albumin or IgG (approximately 20 days). These carrier proteins mediate 
a pH-dependent interaction with the neonatal Fc receptor (FcRn) 
rescuing them from intracellular degradation. The fusion proteins of 
coagulation factors such as factor VII-Fc or factor IX-albumin have 
been previously shown to increase the in vivo half-life of therapeutic 
proteins without affecting the coagulation factors [46-48]. Factor VIII-

Fc fusion proteins have demonstrated an increase in plasma half-life by 
two fold. Due to an increase in the size of the gene upon fusion with 
the carrier protein, the fVIII fusion proteins are excellent candidates 
for use in non-viral gene delivery or vectors which are not constrained 
by size limitation.

The low density lipoprotein receptor-related protein (LPR) is a liver 
multi-ligand endocytic receptor which is known to play a role in fVIII 
catabolism [49]. Cell surface heparan sulfate proteoglycans (HSPGs) 
have also been shown to facilitate this process [50]. The A2 domain 
residues 484-509 were identified to mediate fVIII-LRP binding. The 
binding site for heparan sulfate proteoglycans (HSPGs) within the 
A2 domain of fVIII is residues 558-565.  In conditional LRP-deficient 
mice, inactivation of the LRP gene led to a two-fold increase in plasma 
fVIII levels and a two-fold prolongation of half-life of injected fVIII 
[51]. Reducing fVIII’s affinity for LRP and/or HSPGs therefore is 
considered a mechanism to extend its plasma circulation half-life [52]. 
Factor VIII with mutations in charged residues clustered within the 
484–509 region may be a potential target for human gene therapy. 

Engineering fVIII to evade inhibitors 

Factor VIII inhibitors can occur in hemophilia patients receiving 
fVIII concentrate (alloantibodies) or in patients with a normal fVIII 
gene in certain underlying conditions such as autoimmune disorder, 
lymphoproliferative disorder, malignancy, pregnancy, and certain 
drugs (autoantibodies). Approximately 30% of patients with severe 
hemophilia A develop inhibitors against fVIII. The inhibitors are 
usually polyclonal IgG with specificity against various epitopes on 
fVIII, especially the A2, A3 and C2 domain [53,54]. Because the 
inhibitors are constantly present in excess over fVIII in the plasma, they 
partially or completely neutralize fVIII molecules, resulting in severe 
bleeding episodes. The fVIII inhibitors are quantified by Bethesda 
assay. One Bethesda unit (BU) is defined as the quantity of inhibitor 
that neutralizes 50% of the fVIII in normal plasma in 2 hours at 37°C. 
In patients with low (<5 BU) fVIII inhibitor titers, DDAVP and human 
fVIII are effective. In patients with high titer, raising the fVIII level is 
no longer effective and the administration of porcine fVIII, activated 
prothrombin complex concentrates (APCC), or recombinant human 
activated factor VII (rFVIIa) is necessary [42,55]. Thus, engineering 
fVIII that can avoid existing inhibitors represents another therapeutic 
option in addition to tolerance induction [56]. Lollar et al generated a 
chimeric porcine and human fVIII in which porcine codons replaced 
their countparts in the A2 and C2 domains of human fVIII [57]. The 
resulting chimeric molecules significantly decrease fVIII antigenicity 
when tested in vivo. Whether these chimeric molecules can be used for 
long term fVIII expression warrants further research.

Another approach to circumvent the problems associated with fVIII 
inhibitors is to bypass the use of fVIII altogether. This is exemplified 
by delivering factor VIIa using AAV vectors [58,59], which would be 
exceptionally useful for treatment of patients with pre-existing fVIII 
inhibitors. However, when factor VIIa was expressed at 2 µg/ml or 
higher in mice, it was associated with thrombosis and early mortality. 
Therefore, it is necessary to regulate the expression level of factor VIIa 
to avoid toxicity. 

FXa variants have also been utilized to bypass fVIII for hemophilia 
A treatment [60]. Camire’s group showed factor Xa mutants (FXaI16L 
and FXaV17A) behaved like a zymogen and could activate systemic 
coagulation in a controlled fashion [60]. They exhibited 60 fold 
longer half-lives over wild-type factor Xa in hemophilic plasma and 

Figure 1: Effects of heterogeneous secretory signal peptides on fVIII 
expression. The original signal peptide of fVIII (BDD) was replaced with the 
various signal peptides listed in the table. The HMM score of each signal 
peptide is shown in column 3. All factor constructs were under the control 
of b-actin promoter with a CMV enhancer. At 24 hours post transfection into 
293 cells, the secreted fVIII was collected and the coagulation activity was 
determined by aPTT assay.
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Figure 3: Illustration of the intron mediated, dual AAV system for expressing 
fVIII utilizing the concatemerization of AAV vectors. Major steps are shown 
in the figure. Note there is no need for an intron if the first vector contains 
enhancer only.

could promote robust thrombin generation that bypasses the intrinsic 
pathway. In vivo, FXaI16L protein appeared to be more efficacious than 
FVIIa in controlling clot formation [61]. These variants may also be 
explored as a target for gene therapy of hemophilia A. 

Engineering fVIII for delivery by AAV vectors 

The choice of vector is perhaps the most critical issue for gene 
therapy of human hemophilia. Adenovirus generally remains as 
an episome and the transgene expression is transient. Retroviruses 
require target cells that are cycling or undergoing cell division at the 
time of delivery in order to achieve transduction [13]. Complex and 
sophisticated delivery routes or pretreatment of the animals with agents 
or surgical procedures designed to promote hepatocyte proliferation 
are generally essential. In contrast, the AAV vector has been shown 
to be capable of delivering long term gene expression in post-mitotic 
cells. Although rAAV has advantages over adenoviral or retrovirus 
vectors, it faces a tremendous challenge in delivering fVIII gene. The 
size constraint of AAV for fVIII delivery is illustrated in Figure 2. 

Although human B-domain deleted fVIII (4371bp) is fully 
functional and substantially smaller than full length fVIII (7053bp), 
the AAV vector can only accommodate 4.7kb including the 290bp 
ITR. Using short regulatory elements like a mini-promoter generally 
leads to unsatisfactory levels of expression. Despite the size constraints, 
efforts have been put forward to package B domain deleted fVIII DNA 
into a single AAV vector conforming with the 4.7 kb size limitation 
[62-65]. The expression of fVIII by this strategy could yield as much 
as 27% of normal level using a herpes TK promoter plus hepatitis B 
enhancer. With AAV8 vector, complete correction of hemophilia 
A phenotype was also reported [66]. Small elements such as 297 b 
human α1 antitrypsin promoter, 163 b the hepatic control region of 
apolipoprotein E gene, and the human α1 antitrypsin promoter (193 
b) have also been explored and were able to obtain a moderate level of 
canine BDD fVIII expression in mice [67].

Ignoring the size limitation, it has been demonstrated that AAV 
containing an extra-large size expression cassette and strong promoters 
can fully correct hemophilia A phenotype in a mouse model [68]. This 
approach has several drawbacks. 1) The vector has a yield which is 
at least 10 fold lower than the regular vectors; 2) Partially packaged 
vectors require a high dose in order to restore the expression cassette 
through complementation; 3) It results in heterogeneity of vector 
genomes. Single molecule sequencing and other traditional molecular 
biology methods confirmed that there are no intact genomes packaged 
when the vector cassette exceeds the size limit [69-72]. This strategy 
faces significant challenges that must be overcome before moving into 
clinical trials. 

To solve the size constraint for delivering fVIII using an AAV 

vector, many approaches have been explored using two AAV vectors 
simultaneously [73-77]. Despite their variance, these approaches can 
be divided into two categories: 1) Utilizing the properties of AAV DNA 
concatemerization in vivo [73-75] 2) fVIII polypeptide re-assembly/
association [39,76-78]. 

To take advantages of AAV concatemization in vivo, the dual 
vector systems often include an intron to split the extra-large 
expression cassette. The flexibility of an intron allows the un-
predictable and un-precise nucleic acid sequences formed at the 
juncture of concatemerization to be removed at the RNA splicing 
step. As illustrated in Figure 3, this approach would give rise to a wild 
type like molecule and has been demonstrated in other disease models 
[73-75]. In spite of its elegance in design, the drawback is that only 
approximately 10% of all concatemerizations can lead to DNA that is 
capable of therapeutic gene expression. Chao et al used this approach 
and split the fVIII gene at exon 12 [79]. In vivo testing demonstrated 
approximately 2% of the normal fVIII level for four months in an 

Figure 2: Illustration of the size constraint for expressing fVIII in a single AAV vector. Major elements essential for fVIII expression have been identified. Despite the 
use of the mini-albumin promoter and small poly A sequence, the rAAV genome is already close to 5kb, more than the optimal ~4.7-4.8kb AAV packaging capacity.
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immunodeficient hemophilia A mouse model. A second approach 
using dual vectors is to add an enhancer vector and eliminate the 
requirement for an intron. Upon concatemerization, the enhancer 
would function in either configuration, before or after the basic vectors. 
So far this approach has not demonstrated satisfactory results even 
in small animal studies. A study by Duan’s group suggests that the 
selection of the intron and splice sites have an immense impact on the 
final outcome [80]. 

The first strategy for delivering fVIII using two AAV vectors that 
do not rely on AAV concatemerization was to express the heavy chain 
and light chain separately [76,81,82]. The re-association of both heavy 
chain and light chain then restores fVIII coagulation activity. In C57Bl/6 
mice, up to 4000ng/ml of antigen expression could be achieved at a 
dose 3x1011 vg/mouse. In hemophilia A mice the bleeding phenotype 
was corrected. Similar results were also obtained in hemophilia A dog 
using AAV8 and AAV9 [83]. The foremost problem associated with 
this strategy is that there is an imbalance of the secreted heavy chain 
and light chain. When the vectors having the same promoter were 
injected at a ratio of 1:1, the expression of LC can be 100 fold higher 
than that of HC. This chain imbalance also affects the specific activity 
of the secreted fVIII protein.

Although fVIII light chain has been shown to facilitate fVIII heavy 
chain secretion, the addition of various domains from the light chain 
failed to increase fVIII heavy chain secretion [78]. The only exception 
is a special heavy chain molecule named HCHL, which includes the 
addition acidic region 3 (ar3) [78]. When compared to the normal HC, 
HCHL exhibited 3-5 fold increase in secretion. While it is possible to 
achieve a balance of HC and LC at the antigen level using HCHL, it 
led to the suboptimal utilization of all HC molecules expressed. This 
suggested that a certain level of excessive light chain is necessary to 
allow all HCs expressed to form functional fVIII complex.

The dual vector system carrying HC and LC requires fVIII to be 
split into heavy chain and light chain. A second approach based on 

Figure 4: Illustration of the intein mediated dual AAV system for expressing 
fVIII. Note that splicing reaction occurs in the cytoplasm after the polypeptides 
for fVIII have been translated. 

intein mediated “protein splicing” allows fVIII to be split in many 
different locations. Inteins are essentially “protein introns” which 
can be precisely excised from a precursor protein and rejoins the 
surrounding sequences in N- and C-terminus with a peptide bond 
[84]. Protein splicing is directly analogous to RNA splicing of introns. 
Unlike posttranscriptional RNA splicing, intein mediated protein 
splicing takes place posttranslationally. The N- and C- terminus of the 
precursor protein are named N-extein and C-extein respectively. A 
mature peptide is formed when the exteins are ligated together after 
the intein removal. An intein based strategy for expressing fVIII is 
illustrated in Figure 4. The primary difference between this approach 
and an intron mediated split fVIII is the substrate. The intron strategy 
requires the concatermerization of input vectors, which is one of the 
limiting factors. The intein strategy uses substrates resulting from the 
transcription/translation of input vectors. Thus, there is a substantial 
amplification of spliceable precursors over the initial input of viral 
genomes. However, the limitation is that one splicing reaction only 
leads to one product. Intron mediated concatemerization actually give 
rises to a template that can be transcribed over and over. 

Factor VIII has been successfully manipulated with the mini Ssp 
DnaB intein, which has a total of 154 amino acids and can be split into a 
106 amino acid N-terminal, and a 48 aa C-terminal fragments. The split 
DnaB intein can still come together through non-covalent interaction 
to undergo protein splicing [85,86]. By using this approach, the light 
chain was identified to facilitate fVIII heavy chain secretion [39]. A 
drawback for this strategy in gene delivery is that it will not solve the 
chain imbalance issue. In addition, the un-spliced intein will lead to the 
secretion of a fVIII related neo-antigen, which is likely to complicate 
immune response in the host.

Summary and Future Prospects
Currently, protein replacement therapy offers hemophilia A 

patients an effective treatment option, which raises the safety profile 
requirement for hemophilia A gene therapy. Any fVIII bio-engineering 
that increases the probability of inhibitor formation is unlikely to 
be adopted for use as a therapy. Among all fVIII bioengineering 
approaches discussed, manipulations at the DNA or RNA level, such as 
codon optimization, appear to be useful and can be universally adopted 
for all gene delivery strategies. Manipulations at the protein level, i.e., 
altering the native human fVIII amino acids, have an inherent risk/
limitation to be applied to the general hemophilia patient population. 
Amino acids alterations in fVIII require extensive testing prior to 
human clinical trials to avoid unexpected inhibitor formation. Ideally, 
factor VIII engineering should result in a product that meets the 
following two recommendations. First, a minimal number of non-
native amino acids should be used; and second, there should be no 
significant loss of fVIII functionality such as specific activity or plasma 
half-life. Development of efficient mini-promoters or micro-fVIII 
genes smaller than BDD-fVIII is the future direction for using a single 
AAV vector delivery strategy. The addition of acidic region 3 into fVIII 
heavy chain that enhances secretion is currently the best option for the 
dual AAV strategy.  In addition, fVIII bypassing technology offers an 
alternative option that avoids many limitation of bio-engineering fVIII 
molecules altogether [59-61,87].
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