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Amongst the main items on wish-list of plant biotechnologists are: 
incorporating multiple foreign genes into the plant genome through a 
single transformation event, accumulation of foreign proteins to high 
levels, elimination of position effect and containment of transgenes. 
Despite being enslaved by the nucleus, plastids are capable of expressing 
foreign genes as polycistronic units, and their expression yields high 
levels of protein with bonafide structure. Plastid genome engineering 
offers a number of other unique advantages, including elimination 
of positional effects that are frequently observed with nuclear 
transformation, and transgenes in plastids are contained by stringent 
maternal inheritance (not transmitted by pollen) in most cultivated 
plant species; nevertheless, transfer of plastid genes to the nucleus has 
been reported with implications for transgene containment. However, 
significance of these transfers will depend on the likelihood that 
they will become functional nuclear genes, as well as on the success 
of strategies that can prevent the expression of transferred plastid 
genes in the nucleus [1]. One of the strategies developed is intein-
mediated protein trans-splicing. In this strategy, the gene to be inserted 
is split into two halves, and the activity of the transgene product is 
reconstituted upon self excision of inteins and concomitant ligation of 
the truncated protein products called exteins [2,3]. 

Recently, lateral genome transfer from one species to another is 
witnessed through the phenomenon of ‘organelle capture’. The grafts 
are developed to demonstrate horizontal transfer of plastid genome 
from the cultivated tobacco, Nicotiana tabacum, into two other species: 
Nicotiana glauca, the woody species; and Nicotiana benthamiana, 
the herbaceous species [4,5]. After the stock and scion fusion has 
occurred, the graft sites were excised to regenerate shoots and in 
the regenerated shoots, genome transfer is demonstrated. However, 
significance of these genome transfers will depend on the likelihood 
that such transfers occur naturally between distant plant species, 
because the transfer of organelles between such species may result in 
plastids-nucleus incompatibilities, which represent natural barriers 
to chloroplast capture and possibly prevent the horizontal transfer of 
plastid genomes. Despite such gene or genome outflow, plastid genome 
is an attractive target to express proteins of commercial importance. 

Historically, plastid transformation was achieved in a 
unicellular alga, Chlamydomonas reindhartii [6], followed by stable 
transformation of chloroplasts of tobacco using aadA gene, which 
encodes aminoglycoside 3’-adenyltransferase and confers resistance to 
two broad spectrum antibiotics i.e. spectinomycin and streptomycin 
[7]. After successful demonstration of aadA in tobacco as a dominant 
selectable marker, a reporter gene gfp that encodes green fluorescent 
protein (GFP) from jellyfish was expressed in tobacco plastids [8], 
which facilitated the extension of plastid transformation to non-
green plastids of rice [9], a long awaited goal. This was the time when 
chloroplast transformation was started in several academic and 
industrial laboratories to functionally analyze plastid genes, express 
genes of agronomic and biotechnological importance and extend 
plastid transformation to other plants, including Arabidopsis, potato 
and tomato [10-14]. More recently, chloroplast transformation in 
major crops including soybean, sugarcane, egg plant, lettuce, rape seed, 
cotton and cabbage is achieved, extensively reviewed elsewhere [15]. 
Plastid transformation in dicotyledonous plants is a routine, however, 

extending plastid transformation to monocotyledonous sugar and 
cereal crops including rice, wheat and sugarcane is still at its early stage 
of development due to a number of impediments related to purification 
of transgenome to homoplasmic state [15]. Mitochondria are other 
maternally inherited organelles within plant cell. Where mitochondrial 
genome has been sequenced for a number of plant species, engineering 
its genome is achieved so far in an alga, Chlamydomonas reindhartii 
using biolistic gun [16-18], providing likelihood to engineer 
mitochondria in plants.
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