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Introduction
Hematopoietic stem cells (HSCs) are the most routinely 

transplanted adult stem cell. Currently, they are utilized for the 
treatment of several genetic and acquired diseases including blood 
cancers, autoimmune disorders, and hematopoietic defects. HSCs are 
ideal candidates for gene therapy applications because they possess the 
capacity for self-replication and functionality to propagate the entire 
hematopoietic lineage, thus facilitating amplification of genetically-
modified cells and expression of a transgene product from a multitude 
of hematopoietic cell types. An additional advantage is the tolerogenic 
effect HSCs have on host immunity, which in many contexts is a barrier 
to successful gene therapy. Numerous HSC-targeted gene therapy 
studies have been conducted in a range of disease settings. Current pre-
clinical research for HSC transplantation gene therapy of hemophilia 
A therapy is focused on i) identification of safe and efficient methods 
of nucleic acid transfer into HSCs, ii) optimization of the coagulation 
factor VIII transgene for high expression, iii) minimization of 
conditioning regimen-related toxicity with HSC engraftment and iv) 
overcoming complications due to pre-existing factor VIII immunity. 
Herein, we review the state of the art in HSC transplantation gene 
therapy of hemophilia A. 

Clinical Gene Therapy of Hemophilia A
Loss of circulating factor VIII (fVIII) activity due to mutations 

within the fVIII gene results in the X-linked, recessive bleeding 
disorder hemophilia A. The clinical presentation is a mild to severe 
bleeding phenotype that correlates with the patient’s residual plasma 
fVIII activity level. Hemophilia A has been targeted by numerous 
academic and commercial entities as a prime candidate for gene 
transfer-based therapies for several reasons. First, modest increases in 
fVIII levels (≥ 1% of normal levels) can alleviate spontaneous bleeding 
episodes. Second, many different cell types are capable of synthesizing 
functional fVIII protein and virtually any tissue or cell type with access 
to the bloodstream can be targeted for gene transfer. Third, gene 
therapy should be more economical and less invasive than protein 
replacement therapy given that it would consist of limited (possibly 
only one) treatment events. There have been 3 phase 1 clinical trials of 
gene therapy for hemophilia A conducted to date and each employed  
a different gene-transfer strategy (for review see Doering and Spencer, 
2010 [1]). The first trial, sponsored by Transkaryotic Therapies, Inc., 
involved ex vivo gene modification of autologous dermal fibroblasts 
and transplantation into the greater or lesser omentum of twelve male 
patients [2]. Although no severe adverse events were observed in this 
trial, designed to assess safety, sustained fVIII levels above 1% of normal 
were not achieved. In a second study, sponsored by Chiron Corporation, 
retroviral particles containing a human B-domain deleted (BDD) fVIII 
transgene were introduced into thirteen male hemophilia A patients 
via peripheral vein infusion [3]. Again, fVIII levels above 1% of normal 
were not maintained and the trial was halted. The third trial, sponsored 
by GenStar Therapeutics, Inc., consisted of a single patient being 
infused with high-capacity adenoviral particles containing the full-
length human fVIII cDNA. Following administration of viral vector, 
the patient developed transient chills, fever, back pain, and headaches 

preceding the onset of thrombocytopenia and transaminitis. This 
patient did achieve fVIII levels >1% of normal that were maintained for 
several months, but as predicted based on the non-integrating property 
of adenoviruses, the fVIII activity eventually declined. The trial was 
halted due to the significant side effects observed. In summary, not 
only have there been no milestones of success in previous trials, to our 
knowledge, there are no approved or ongoing clinical trials utilizing 
gene transfer to treat hemophilia A.

Clinical Hematopoietic Stem Cell (HSC) Therapy
Hematopoietic stem cells first were discovered in the late 1940’s 

as a result of the finding that spleen cells could protect mice from 
exposure to lethal doses of radiation [4,5]. A comprehensive review of 
the history of HSC transplantation (HSCT) has been documented by 
E. D. Thomas, recipient of the Nobel Prize in Physiology or Medicine 
in 1990 for his pioneering work in this field [6]. Subsequently, HSCs 
have been implemented in the treatment of several genetic and 
acquired diseases including leukemia, non-Hodgkin’s lymphoma, 
aplastic anemia, and sickle-cell disease. Annually, more than 20,000 
clinical HSCTs are performed. The ability of HSCs to reconstitute 
all cellular hematopoietic lineages, including myeloid, lymphoid, 
and erythroid populations through a combination of self-renewal 
and cellular differentiation endows them with unique clinical utility. 
Engrafted HSCs are capable of contributing to hematopoiesis for the 
duration of the patient’s life. HSCs are harvested routinely from bone 
marrow aspirates or peripheral blood since they can be mobilized into 
the bloodstream using granulocyte-macrophage colony-stimulating 
factor. For the purpose of gene transfer-based therapies, HSCs can be 
manipulated successfully ex vivo, allowing for the implementation of 
safety parameters prior to transplantation and subsequent engraftment.

In 1953, Medawar and colleagues made the fundamental discovery 
that immune tolerance to allogeneic donor cells could be achieved in 
mice in utero [7]. The result of a successful HSC allotransplant is two 
genetically-distinct sources of hematopoietic cells, referred to as a state 
of mixed cellular chimerism, where immunotolerance to the foreign 
antigens has been established not only for hematopoietic cells, but 
for any other cell or tissue type derived from the host or donor. For 
example, acceptance of donor skin grafts often is used to demonstrate 
this phenomenon. However, with any allogeneic transplantation, there 
exists significant risk that the donor cells, typically harboring HLA 
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mismatches, will identify host tissue as foreign, triggering a cytotoxic 
immune response clinically described as graft versus host disease 
(GvHD). GvHD is the major side effect of HSC transplantation and 
carries with it significant morbidity and mortality risk. Therefore, to 
avoid the risk of GvHD, the majority of HSCT gene therapy studies 
have utilized autologous cells. In this setting, the only antigen disparity 
is that of the transgene product, e.g. factor VIII (fVIII) in hemophilia 
A gene therapy. As is discussed herein, the immunotolerogenic nature 
of HSCT is a major benefit to gene therapy of hemophilia A, where the 
transgene product, fVIII, is a known potent immunogen (for review of 
fVIII immunogenicity, see [8]).  

Strategies for Genetic-Modification of HSCs
Since the emergence of gene-transfer studies in the early 90’s, HSCs 

have been targeted to restore therapeutic levels of certain proteins, the 
expression of which is affected by deleterious genetic mutations. In 
addition to the tolerogenic potential of HSCs, targeting this population 
allows for indefinite expression of a desired protein product from 
multiple terminally differentiated cell lineages. Several methods have 
been demonstrated to transfer functional genetic material or to correct 
existing genetic defects within HSCs, and are reviewed herein (Table 
1). Current methods for nucleic acid transfer include viral, chemical, 
and physical techniques. Viral vectors are the gold standard of genetic 
transfer into HSCs. Each viral vector system has different integration 
capabilities, as well as required components for nuclear uptake and 
expression. Choice of viral vector system is dependent on the transgene, 
transduction efficiency, and safety requirements. Common viral vector 
systems are based on retroviruses, lentiviruses, adenoviruses, adeno-
associated viruses, and the herpes simplex virus.  In addition to viral 
strategies, cationic lipids and other non-viral synthetic macromolecules 
have been used widely for cellular introduction of DNA [9]; however, 
to date, non-viral-based methods targeting HSCs show low potential 
as a therapeutic approach [10,11]. Physical methods include particle-
mediated transfection, electroporation, and hydrodynamics-based 
transfection. While very little research has been conducted on HSCs 
using particle-mediated transfections, electroporation has been 
used successfully to introduce genetic material into hematopoietic 
progenitors and their progeny [12-14].

The earliest proof-of-concept HSC gene-transfer studies utilized 
recombinant γ-retroviral vectors derived from murine leukemia 
viruses (MLV) and produced in recombinant form by transient 
transfection of NIH3T3 or HEK293T cells with viral packaging and 

expression plasmids [15,16]. Packaging cells provide the accessory 
protein components required for the biosynthesis of non-replication 
competent retroviral vectors. Pre-clinical studies using murine models 
demonstrated the versatility of this vector system to transfer nearly any 
transgene into a variety of cell types [17-19]. Soon after, however, it 
was shown that γ-retroviral vector systems could not transduce HSCs 
as efficiently as other rapidly dividing cell types. Subsequently, it was 
shown that γ-retroviral vectors require cellular division within the target 
cell to facilitate nuclear translocation of the pre-integration complex 
and integration of the transgene [20,21]. Due to the requirement of 
cell division and the relatively infrequent replication events of HSCs, 
protocols incorporating cytokine cocktails were developed and shown 
to bolster the transduction efficiency of murine HSCs [22-26].

To circumvent the need for cellular division, in 1996, Naldini 
and colleagues reported successful gene transfer in cell cycle arrested 
fibroblasts using a recombinant HIV-based lentiviral vector system 
[27]. Fibroblasts in G1-S, G2, and to a lesser degree, G0 cell cycle stages 
showed increased transduction of firefly luciferase and β-galactosidase 
reporter genes compared to MLV-based vectors. Furthermore, this 
vector system was shown to transduce terminally differentiated neuronal 
cells in vivo following direct injection into the rat corpus striatum and 
hippocampus. This was the first study to demonstrate successful gene 
transfer into non-replicating cells using a retroviral vector. Although 
data support the ability of lentiviruses to transduce non-dividing 
cells, it generally is recognized that dividing cells are transduced more 
efficiently. A comparative study of transduction efficiencies between 
MLV-based retroviral vectors and HIV-1 based lentiviral vectors in 
CD34+ cells revealed the superiority of HIV vector integration into 
quiescent hematopoietic progenitors [28]. Subsequently, lentiviral 
vectors have been shown to transduce numerous non-dividing cell 
types including lung epithelial cells [29], neuronal cells [30,31], and 
primary hepatocytes [32]. The ability of lentiviral vectors to infect 
quiescent cells is reliant upon two proteins: gag (matrix protein) and 
Vpr, although Vpr has been deleted in third and fourth generation 
lentiviral vectors without severe loss of infectivity. These proteins 
activate nuclear import machinery facilitating transport of the pre-
integration complex through the nucleopore, decreasing the need for 
mitosis-induced nuclear permeability [33,34]. With respect to the 
targeting of HSCs, recombinant retroviral vectors, and most recently 
lentiviral vectors, have been the system of choice for proof-of-concept 
studies in a variety of animal models.

Technologies for HSCT Gene Therapy Advantages Disadvantages

γ-Retroviral Vectors
•	 Ability to target many cell types
•	 Long-term expression due to integration
•	 Increased safety due to SIN development

•	 Requirement of cellular division 
•	 Necessity of cytokine cocktails to stimulate HSC cycling
•	 Insertional mutagenesis potential 
•	 Complex manufacturing 

Lentiviral Vectors
•	 Wide range of cell targets
•	 Long-term expression due to integration
•	 Increased safety due to SIN development 

•	 Require multiple plasmids/elements provided in trans for 
production

•	 Risk of insertional mutagenesis 
•	 Complex manufacturing

Sleeping Beauty Transposon Systems 
(SBTS)

•	 Low complexity
•	 Simple manufacturing (plasmid DNA only)
•	 Potentially reduced immunogenic response

•	 Lower-level expression of the transgene product
•	 Random insertion pattern 
•	 Potential for secondary or tertiary  transposition events

Zinc Finger Nucleases (ZFNs)
•	 Targeted gene correction or addition
•	 Potential to utilize endogenous genetic control elements
•	 Long-term expression through chromosomal integration

•	 Safety remains undetermined 
•	 Risk of off-target mutagenesis 
•	 Require additional means of cellular entry 
•	 Limited sequence targeting potential

Peptide Nucleic Acids (PNAs)
•	 Site-specific modification
•	 Useful in gene silencing
•	 In vivo delivery and functionality possible 

•	 Limited research to date
•	 Risk of off-target sites of genetic modification
•	 Low efficiency

Table 1:
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In addition to recombinant retroviral vectors, other non-viral 
technologies are being investigated for genetic modification of HSCs. 
In eukaryotes, transposon-transposase systems create duplications or 
transpositions of certain genetic sequences throughout the genome. In 
humans, transposons have been evolutionarily silenced, but one has 
been reconstructed from the salmonoid fish genome as a potential gene 
transfer and therapy tool [35]. Sleeping Beauty transposons systems, 
named for their evolutionarily dormant phase, employ an enzyme, 
termed transposase, that catalyzes transposition events. For gene 
therapy applications, a transgene cassette contained within a donor 
plasmid serves as the substrate for transposase-mediated transposition 
into a host cell chromosome. Thus, the only two requirements for 
the Sleeping Beauty transposon system (SBTS) are i) a transposon 
containing the gene of interest, and ii) a source of transposase 
produced either in cis or in trans. The advantages lie in the simplicity of 
this design, as well as the reduced risk of immunogenic response [36]. 
SBTS have been validated in mouse models for the treatment of several 
genetic disorders, including hemophilia A where they have been shown 
to drive fVIII expression and phenotypic recovery for over 30 weeks 
[37-39]. However, as is the case for most SBTS applications, the target 
cells were not HSCs and expression levels were lower than is routinely 
achieved using γ-retro- and lentiviral vectors. 

Modification of the transposons, and specifically the transposase 
itself, has led to increased transposition and transgene expression 
[40]. Recently, hyperactive transposases have been identified through 
directed evolution-based screening and have been shown to improve 
the ex vivo modification of human cord blood CD34+ cells following 
electroporation. In that study, genetically-modified cells retained 
the capacity for differentiation into all hematopoietic cell lineages. 
However, the efficiency of genetic modification did not exceed 27% 
[41,42]. Despite significant progress, remaining hurdles for SBTS 
include i) low gene-transfer efficiency, which requires a method to 
introduce the transposon and transposase into the target cell, and ii) 
safety concerns surrounding insertional mutagenesis. Of note, SBTS do 
demonstrate a more random integration profile than retroviral vectors, 
which predominantly target promoter regions within gene loci [43,44]. 
Furthermore, the long-term stability of transposed sequences is not 
known and it is possible that secondary, tertiary, etc. transposition 
events could further increase the risk of insertional mutagenesis.

Currently, the majority of gene therapy research consists of 
exploring and developing gene addition techniques where a functional 
transgene is introduced into a cell to restore expression. However, 
several groups now have identified methods for the correction of 
defective genes in situ. There currently are several mechanisms by 
which gene correction is being pursued. By virtue of its nature, gene 
correction allows for usage of the endogenous promoter and other 
regulatory elements and obviates the risk of insertional mutagenesis. 
Two prominent technologies for gene correction in HSCs include zinc-
finger nucleases (ZFNs) and peptide nucleic acid (PNA) conjugates. 
Currently, both ZFNs and PNA-conjugates are in clinical trials for HIV 
and cancer treatment, respectively.

Zinc-finger nucleases combine a zinc-finger domain capable of site-
specific DNA binding with a non-specific restriction nuclease domain. 
Upon dimerization at specified nuclear DNA recognition sequences, 
double-stranded DNA breaks are created that serve as substrates for 
homology-directed DNA repair (HDR). During HDR, the cleaved 3’ 
ends invade the sister chromatid and replicate using the intact strand 
as a template. In the case of X-linked diseases such as hemophilia A, 
HDR is not possible unless a homologous DNA template is provided 

in trans. Without a template, the cleaved DNA is subject to random 
mutagenic events, i.e. insertions and deletions in an attempt to ligate 
the cleavage and avoid apoptosis. However, cleavage in the presence 
of a DNA template containing homologous sequences surrounding 
the target gene sequence results in HDR directed replacement of 
the mutation with the corrected sequence now under endogenous 
promoter and enhancer control. As ZFN-mediated gene correction 
has been subjected to limited testing in humans, the safety concerns 
are relatively unknown. Identification of off-target ZFN activity has, 
however, been demonstrated in pre-clinical studies including a recent 
study demonstrating the use of ZFNs for in vivo treatment of a murine 
model of hemophilia B [45]. This study utilized adeno-associated viral 
(AAV) vector to deliver episomally expressed ZFNs and a homologous 
template encoding the factor IX (fIX) cDNA. The AAV vector 
transduced primary hepatocytes and the genetically-modified cells 
expressed fIX at 3-7% normal levels. However, the limited ability of 
AAV to target HSCs in vivo obviates the practicality of this strategy 
for HSC-directed gene therapy. Similar systems are being developed to 
target gene addition to specific sequences within the human genome. 
For example, it was recently shown that the CXCR5 and AAVS1 sites 
can be targeted for safe harbor gene addition using ZFNs that bind to 
and specifically cleave sites within these regions [46]. Introduction of 
donor DNA by an integrase defective lentiviral vector resulted in the 
introduction of genetic material at these specific and pre-determined 
sites.

Peptide nucleic acids (PNAs) are similar to ZFNs in that they also 
stimulate site-directed recombination using co-transfected donor DNA 
templates. PNAs are polymers containing purine and pyrimidine bases 
covalently attached to a repeating N-(2-aminoethyl)-glycine backbone. 
The uncharged backbone diminishes electrostatic repulsion from 
DNA, allowing for higher affinity binding to recognized sequences. As 
a result, PNAs can efficiently interrupt normal transcription processes 
and effectively knock out a gene product. There is ongoing research 
in exploring the use of PNAs as pharmacological transcription factor 
decoys to down regulate signaling and expression of oncogenic 
products [47]. In the case of genetic modification of HSCs, PNAs 
have only entered into investigation recently. Rogers and colleagues 
reported in vivo genomic modification of HSCs using PNA conjugates 
fused with a nuclear-localizing protein [48]. Current limitations to 
this method include the specificity of these PNA conjugates given that 
genomic modification of somatic tissues also was observed, as well as 
the low-level percentage of genetically-modified cells, which currently 
is less than 5%.

Clinical HSCT Gene Therapy
The first clinical gene therapy trials using HSCs revealed many of 

the safety concerns inherent with somatic cell genetic modification 
using recombinant retroviral vectors. Despite the pre-clinical and early 
clinical successes of retroviral based therapy for childhood X-linked 
severe combined immune deficiency (SCID), a 2002 report revealed 
the generation of T cell leukemia as a result of genetic-modification 
in one of the initial patients [49]. This trial was eventually suspended 
when 5 of 20 patients developed T cell acute lymphoblastic leukemia 
(ALL). As a result, a large effort was placed on understanding not only 
the mechanism of integration, but also the location and downstream 
effects of retroviral transduction. g-retroviral vectors integrate into 
chromosomal sites that are actively transcribed, including potential 
proto-oncogenes, resulting in aberrant transcription patterns and 
expression [50-54]. To date, insertion-site and clonality analysis 
remains a top safety parameter for HSC targeted gene therapy.

The creation and implementation of self-inactivating (SIN) 
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viral vectors is predicted to alleviate some of the concern regarding 
integrating viral vectors. Deletions in the 3’ LTR of retroviral vectors 
are transferred to the 5’ proviral LTR resulting in transcriptionally 
inactive viral particles [55]. This is important because in lentiviruses 
the LTRs are promoters with strong enhancer capabilities. As has 
been demonstrated, the strong enhancers can induce the transcription 
of genes near the integrated proviral sequence [56]. This safeguard, 
however, requires the insertion of a new promoter into the vector 
sequence, such as the elongation factor-1 alpha or cytomegalovirus 
(CMV) promoters. Promoter selection enables control over which cells 
express the transgene product and at what level. Current pre-clinical 
research and clinical trials are exploring the use of SIN lentiviral vectors 
because of their lower genotoxic profile and increased predicted ability 
to modify HSCs ex vivo compared to the original γ-retroviral vectors 
[57-61]. Although proof-of-concept studies clearly have shown the 
benefits of using SIN-lentiviral vectors, it is possible that these vectors 
may have adverse effects on viral titer, engraftment potential, and/or 
transgene expression. Current clinical trials are designed to answer 
these specific questions, and the gene therapy field has made safety of 
viral integration a primary concern. 

Recent advancements in the safety profile of g-retroviral vectors 
have led to two successful clinical trials of HSCT gene therapy for 
adenosine deaminase (ADA) deficiency and X-linked SCID. In August 
2011, Gaspar et al. inserted the ADA cDNA into a γ-retroviral vector 
pseudotyped with the gibbon-ape-leukemia-virus envelope [62,63]. 
Six children ceased enzyme replacement therapy prior to treatment 
and were conditioned with either 140mg/m2 melphalan or 4mg/
kg busulfan intravenously prior to autologous HSCT gene therapy. 
Four of six subjects recovered immune function and three subjects 
no longer required ADA or immunoglobulin replacement therapy. 
All patients survived and no leukemia or other adverse events were 
observed within the 24 to 84 month follow-up. ADA expression was 
sustained in all hematopoietic lineages resulting in restored metabolic 
function, and functional T cell levels were elevated and sustained 
over 5 years post gene therapy. This trial is now one of two studies 
to present long-term, safe therapy using genetically-modified HSCs 
for the treatment of a monogenic disease [64]. In the treatment of 
X-linked SCID, Gasper et al. also used a similar γ–retroviral vector 
encoding the common γc subunit of the interleukin 2 receptor (IL2RG) 
cDNA to transduce CD34+ bone marrow cells stimulated with stem 
cell factor, thrombopoietin, interleukin-3, and Flt-3 ligand prior to 
transplantation [65]. Nonmyelosuppresive conditioning was used in 
this study and 10 of 10 patients showed elevated, functional polyclonal 
T cell populations over a 54-107 month follow-up. While most side 
effects were minimal and overcome with standardized course of action, 
one patient did develop T cell ALL due to up-regulation of the LMO-2 
proto-oncogene. However, this patient maintained a polyclonal T cell 
population and currently is in remission. While the usage of γ-retroviral 
vectors has proven to be an effective and predominantly safe treatment 
option against ADA-deficiency SCID and X-linked SCID, the risk 
of oncogenic up-regulation is still a concern. ADA-deficiency SCID 
treatment has not, to date, resulted in the expansion of leukemic cells 
[66]. The emergence of T-ALL in X-linked SCID treatment but not 
ADA-SCID despite similar viral vector preparation methods suggests 
that the discrepancies in safety are the result of transduction methods, 
biology of the corrected cells, and/or differences in the two disease 
states. 

Immunological Aspects of HSCT Gene Therapy
A major risk of allogeneic transplantation and even autologous 

transplants containing neo-antigens is that of immunological response 

and rejection. This issue is relevant to hemophilia A gene therapies 
because transplantation of HSCs expressing fVIII can induce an 
immune response to fVIII. Non-specific immunosupressants have 
shown success in reducing transplant rejection, however, they pose 
significant risk of subsequent infection. As a result, efforts to prevent 
specific inhibitor formation in gene therapy strategies have become 
high priority. Several studies have combined gene therapy approaches 
with immune tolerance strategies to prevent this inactivation response. 
HSCs remain ideal targets because the immune system is derived from 
these cells, and expression of transgenes within hematopoietic cells can 
induce immune tolerance. 

Several labs have conducted HSCT gene therapy using mouse 
models to study immune tolerance through molecular chimerism. For 
example, it has been shown that retroviral gene transfer of the porcine 
glucosyltransferase UDP galactose gene, αGT, into naïve murine bone 
marrow cells induced tolerance to porcine xenografts containing the 
foreign epitope [67]. Furthermore, analysis of the B cell population 
revealed that specific antibody-producing cells against the xenograft 
were eliminated during immune reconstitution. In a subsequent study, 
retroviral gene transfer of the cDNA encoding H-2Kb, a murine major 
histocompatibility class I antigen, into HSCs resulted in long-term 
expression of the antigen in hematopoietic lineages. Furthermore, 
genetically-modified T cells facilitated tolerance to transplanted H-2Kb 
expressing targets, but retained the capacity to reject third-party 
grafts, suggesting that T cells are capable of induced tolerance via gene 
therapy [68]. Additionally, it was confirmed that this gene therapy 
approach induced negative selection of cells expressing the alloreactive 
T cell receptor in the thymus, and that thymic re-education is possible 
through genetic modification [69]. As described below, under certain 
conditions, expression of fVIII from genetically-modified HSCs 
induces long term tolerance in transplanted mice.

HSCT for the Treatment of Hemophilia A
Hemophilia meets several criteria for HSCT gene therapy. First, it 

is a monogenic X-linked disease caused by the deficiency of a single, 
essential blood coagulation factor. Second, fVIII functions in the 
circulation. Thus, hematopoietic cells are ideal vehicles for its delivery 
to the bloodstream. Third, mere picomolar concentrations of fVIII are 
sufficient to alleviate spontaneous bleeding episodes. Fourth, virtually 
all cell types tested have the capacity to biosynthesize fVIII, albeit at 
varying levels. Currently, there is no cure for hemophilia A and state of 
the art fVIII replacement therapy is cost prohibitive to the majority of 
people with the disease. Lastly, protein replacement therapy is plagued 
by complications arising from the necessary intravenous route of 
administration. The risk/benefit ratio of gene therapy as a treatment 
for hemophilia A has resulted in the consensus that gene therapy is the 
most promising therapeutic advance on the horizon [70]. 

Evans and Morgan conducted the first preclinical study of HSCT-
based gene therapy of hemophilia A [71]. Using a murine leukemia 
virus-based γ-retroviral vector, the human fVIII cDNA was transferred 
to murine bone marrow cells, which subsequently were transplanted 
into hemophilia A mice that were pretreated with a lethal dose of total 
body irradiation (TBI). In this study, correction of the fVIII deficiency 
was not achieved, but it provided an early indication of the low level 
biosynthesis of human fVIII as a major barrier to the development of 
hemophilia A gene therapy applications. In 2002, Tonn et al. showed 
that there are hematopoietic lineage specific differentials in fVIII 
biosynthesis [72]. It was observed that erythroid and megakaryocytic 
cells secreted higher levels of B-domain deleted (BDD) human fVIII 
compared to lymphoblastoid or T cell leukemia cell lines. The first 
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demonstration of HSCT gene therapy based induction of therapeutic 
fVIII levels (generally accepted to be >5% or 0.05 U/ml fVIII 
activity) came in 2004 and 2005 by Hawley and colleagues [73,74]. 
Using a bicistronic γ-retroviral vector encoding the BDD human 
fVIII transgene as well as an EGFP reporter transgene, genetically-
modified cells were selected prior to transplantation leading to higher 
level engraftment of genetically-modified cells. Recognizing the 
technical expression limitations in these studies, a greater effort was 
placed in engineering the fVIII transgene for higher level expression 
from hematopoietic as well as other cell types. Point mutagenesis of 
endoplasmic reticulum chaperone immunoglobulin-binding protein 
(BiP) recognition site, specifically at residue 309, increased expression 
2 – 3 fold [75]. Further characterization and engineering led to the 
generation of constructs containing 6 additional N-linked glycans 
in the B-domain that were shown to further improve secretion [76]. 
Although it is predicted that these constructs with enhanced fVIII 
expression will benefit HSC-directed gene therapy, this has not been 
conclusively demonstrated in a head to head study against standard 
BDD human fVIII. In another study, Hawley and colleagues explored 
the use of a simian immunodeficiency vector system containing a 
B cell specific enhancer/promoter to drive fVIII expression [77]. 
Therapeutic levels of fVIII were induced and intracellular fVIII was 
detected in B220+ B cells and CD138+ plasma cells, but not in HSCs. 
Transplantation under non-myeloablative conditioning induced a 
minor immunological response after subsequent challenge with fVIII. 
By targeting B cells exclusively, tolerance to fVIII through molecular 
chimerism can be achieved. However, future studies are required to 
elucidate lineage-specific limitations in expression. 

The benefits of using fVIII orthologs, however,  have been well 
characterized. Characterization of porcine fVIII, has contributed 
greatly to overcoming the fVIII expression barrier. BDD porcine 
fVIII expresses at 10-100 fold greater levels than BDD human fVIII in 
vitro and in vivo [78-80]. The use of the porcine fVIII cDNA in gene 
therapy strategies was founded on the clinical history of plasma derived 
porcine fVIII in the treatment of acute bleeding episodes in persons 
with anti-human fVIII inhibitory antibodies. Of note, no species-
based incompatibilities have been observed between porcine fVIII 
and the human blood coagulation components, including binding 
to von Willebrand factor. Currently, a recombinant BDD porcine 
fVIII product is undergoing late-stage clinical testing in inhibitor 
patients. Therefore, there is no technical obstacle to the utilization 
of the high expression property of porcine fVIII in gene therapy 
applications to overcome the fVIII expression barrier. Investigation 
into the mechanism responsible for the expression differential 
revealed that the dominant characteristic in high level expression is 
improved post-translational secretory efficiency [79]. In support of 
this mechanism, it was demonstrated that recombinant porcine fVIII 
induces the unfolded protein response (UPR) to a lesser extent than 
human fVIII, thus explaining the previously observed differential in 
post-translational secretory transport [81]. Additionally, it was shown 
that pharmacogenetic knockdown of GRP78/BiP, a master regulator 
of UPR, using shRNA technology increased human fVIII production, 
and overexpression of X-box-binding protein 1 (XBP1), another UPR 
regulator, resulted in increased production of both human and porcine 
fVIII. Therefore, we are beginning to understand the basic mechanisms 
governing human and orthologous fVIII biosynthesis. 

Several studies have demonstrated the utility of high expression 
porcine fVIII sequences in gene transfer-based applications for 
hemophilia A. For example, the BDD porcine fVIII transgene was 

transferred into HSCs using recombinant murine stem cell viral 
vector (a γ-retrovirus-derived vector) and the transduced cells were 
transplanted into hemophilia A mice subjected to a lethal dose of TBI 
[82]. All experimental mice expressed circulating fVIII activity levels 
near or exceeding 100% normal human levels that were sustained 
for over 18 months after transplantation. Subsequently, reduced-
intensity conditioning regimens were explored including sub lethal 
TBI (5.5 Gy), costimulation blockade (anti-CD40L and CTLA4-Ig), 
and a combination of busulfan and anti-thymocyte serum. Each of 
these regimens combined with HSCT gene therapy incorporating the 
BDD porcine fVIII transgene resulted in successful engraftment and 
sustained therapeutic fVIII expression in all hemophilia A mice [83]. 
Additionally, it was shown that mice engrafted under the reduced-
intensity conditioning regimens did not elicit an immune response 
following challenges with human fVIII. Furthermore, T cells from 
these animals were not activated upon stimulation with porcine fVIII 
suggesting that immunologic tolerance to fVIII was induced as a result 
of the HSCT gene therapy [84]. From this, it can be concluded that 
T cell suppression is critical to successful engraftment of genetically-
modified HSCs encoding f VIII. 

Investigations into the mechanisms underlying fVIII production 
and secretion differentials within orthologous and bioengineered 
transgenes have been pursued concomitantly with their application 
in gene therapy strategies. The use of porcine and high-expression 
human/porcine (HP) hybrid constructs have reduced the gene transfer 
requirements in terms of the genetically-modified cell dose and 
proviral copy number, thus increasing the safety profiles of proposed 
gene therapy protocols. Additionally, through the use of HP constructs, 
it is possible to conserve the high expression characteristics of porcine 
fVIII within a predominantly human fVIII transgene. In one study, a 
HP construct containing a 9:1 ratio of human to porcine amino acid 
composition respectively, showed identical therapeutic performance to 
BDD porcine fVIII in the hemophilia A mouse HSCT gene therapy 
model [85]. These results are relevant and potentially critical to the 
design of future clinical gene therapy applications in light of the 
previous failures to achieve therapeutic fVIII expression levels in 
clinical trials. 

Prior to approval for clinical testing in humans, a proposed gene 
therapy product must demonstrate pre-clinical safety and efficacy 
using multiple in vivo experimental systems. For hemophilia A, several 
model systems exist including the hemophilia A mouse model [86], 
canine model [87], and ovine model [88]. While characterization and 
experimentation with the ovine model is in the relatively early phases 
[89], the murine and canine models have been studied and utilized 
extensively in the pre-clinical development of novel hemophilia A 
therapeutics including gene-transfer based therapies (for review of the 
canine studies, see [90]). In the context of the broader application of 
HSCT gene therapy, most large animal studies have been performed 
using canine and non-human primate models (for review, see [91]). 
These models have been instrumental in the development of methods 
for stem cell harvest, ex vivo manipulation, and gene transfer as well 
as studying the biology of transplanted genetically-modified cells. 
Recently, Wilcox and colleagues demonstrated correction of canine 
Glanzmann thrombasthenia (GT), a rare platelet adhesion disorder, 
using HSCT gene therapy [92]. Affected dogs underwent autologous 
HSCT gene therapy incorporating a HIV-1-based lentiviral vector 
encoding a functional integrin αIIbβ3 gene. Post-transplantation 
analysis revealed approximately 5,000 αIIbβ3 receptors on 10% of 
platelets, resulting in improved bleeding times and reduced blood loss 
up to 5 years after treatment. However, as is the case for any model 
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system, there are limitations to its ability to mimic human testing. 
For example, many reagents used in HSCT and HSCT gene therapy, 
including cytokines, stem cell markers, gene transfer vectors and 
conditioning agents, display species specificity. Therefore, reagents 
and dosing schemes may not be translatable from preclinical to clinical 
studies. Currently, the most relevant preclinical test of a HSCT gene 
therapy product is the ability to genetically-modify human CD34+ cells 
without significantly diminishing their engraftment and hematopoiesis 
potential. To examine this, murine (NOD.Cg-PrkdcscidIl2rgtm1Wj1/SzJ, 
referred to as NSG mice) xeno transplantation models are the gold 
standard. Therefore, there is no consensus on the best path toward 
regulatory approval for HSCT gene therapy and what role, if any, large 
animal models of hemophilia A will play in this process. 

HSCT Gene Therapy for Patients with Inhibitors
The development of neutralizing antibodies against fVIII represents 

the most challenging and costly complication in the treatment of 
hemophilia A. Inhibitors emerge in 20-30% of patients with severe 
hemophilia and typically prevent future treatment with human fVIII 
replacement products. Instead, patients are routinely treated using 
fVIII bypassing agents such as recombinant activated factor VII or 
activated coagulation factor concentrates or, historically, porcine 
fVIII product. Currently, a recombinant BDD porcine fVIII product 
is in phase 3 clinical testing. Unfortunately, each of these treatments 
has significant limitations, e.g. subsequent immunity to porcine fVIII, 
and are best utilized on an acute basis and not for lifelong prophylaxis. 
Therefore, inhibitor patients represent the most at risk hemophilia A 
population in the developed world and, therefore, can be considered 
prime candidates for novel experimental therapies such as HSCT gene 
therapy. However, due to the complexities of fVIII gene transfer and 
expression, historically, little attention has been devoted to this patient 
population.

Recently, it was demonstrated that the porcine fVIII transgene can 
be used to induce fVIII expression in mice with preexisting antibodies 
to human fVIII. To study the use of HSCT gene therapy for patients 
with inhibitors, humoral immunity to human fVIII is induced in 
mouse hemophilia A models by weekly intravenous administration of 
human fVIII over 4-6 weeks. Typically, significant anti-human fVIII 
titers are observed in all animals, and in one study it was shown that 10 
– 14% of these antibodies have cross-reactivity to BDD porcine fVIII. 
Even in this unfavorable environment, using a gene transfer strategy 
incorporating porcine fVIII and myeloablative conditioning, complete 
correction of the fVIII deficiency (3.6 ± 1.3 U/ml) and eradication of 
the fVIII inhibitors (t1/2 of 16 days) was observed (93). This was the 
first successful report of HSCT gene therapy in an anti-fVIII inhibitor 
model where fVIII activity was restored and the inhibitors were 
eliminated. Despite the inherent difficulty of treating hemophilia A 
patients with pre-existing inhibitors, these results demonstrate the 
feasibility of HSCT gene therapy in this high-risk disease setting.

Summary
The field of HSCT gene therapy has advanced from proof-of-

concept studies to the treatment of humans with acquired and genetic 
diseases. Several clinical trials have resulted in life-saving successes, and 
the curative potential of genetically-modified HSCs is now a reality with 
the number of disease applications growing rapidly, including chronic 
granulomatous disease, Wiscott-Aldrich disease, Fanconi anemia, 
β-thalassemia, and sickle cell disease. Hemophilia A remains a prime 
candidate for HSCT gene therapy. Advancements in fVIII transgene 
design, viral vector engineering, and immunological conditioning have 

cured this disease in animal models and show promise for upcoming 
clinical trials. Additional studies continue to elucidate methods and 
technologies to identify and isolate HSCs and improve transduction of 
this important gene therapy target. In addition, overcoming the current 
limitations of fVIII expression, as well as reducing the risks of the gene 
transfer procedure, such as insertional mutagenesis, is possible. Further 
advancements in the field of HSCT gene therapy have included novel 
mechanisms to target site-specific gene insertions or corrections using 
engineered nucleases or PNA-complexes. Through ongoing intensive 
research, the field of HSCT gene therapy is progressing towards safer, 
more efficient, and cost effective treatment options.
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