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In many widely varying types of systems, energy is deposited by the 
collision of swift hadrons (typically H+ or He2+), with target molecules, 
resulting in the conversion of projectile kinetic energy to various types 
of energy in the target, through various processes. The ability to absorb 
energy from a hadronic projectile is referred to as the stopping power or 

linear energy transfer (LET), dE
dx− , of the target species.

For a single component system, the stopping power for fast 
projectiles can be described in SI units by Bethe’s formulation [1].
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Here, n is the scatterer density, Z1 is the projectile charge, Z2 is the 
target electron number, v is the projectile velocity and  m  and e are 
the electron mass and charge, respectively. The quantity I0 is the mean 
excitation energy of the target, and is the single materials quantity that 
describes the ability of the target to absorb energy from a projectile 
[1]. It is obtained as the first energy weighted moment of the dipole 
oscillator strength distribution of the target [1,2]. 
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It should be noted that the complete dipole oscillator strength 
distribution of the target, including all discrete and continuous 
transitions, is required.

In many situations, however, such as planetary atmospheres, 
[1] plasmas and warm, dense matter, the target can be composed of
various components with various scatterer densities. In order to treat
the stopping power of such a mixture, providing the components are
non-interacting, each component would be treated separately and the
results summed, as
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However, it would be more convenient to treat the mixture as a 
single substance as in eq.1, with its own mean excitation energy, 

0
mixI . 

The stopping power for the mixture as a whole for a projectile of charge 
Z1 would then be 
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Here, nmix is a density of scattering centers, where mix i
i

n n=∑ .

Zmix is the weighted average of the number of electrons per scatterer, 
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mixI  is the mean excitation energy appropriate 

to the mixture. Such treatment would derive from a sum of stopping 
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powers of the components, weighted by their relative density of 
scattering centers, as in eq. 3.
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Equating equations 4 and 5, one obtains
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Thus, the mean excitation energy of the mixture of non-interacting 
components is simply the appropriate weighted average of the mean 
excitation energies of those components.

Applying the foregoing to the constituents of the atmospheres of 
solar planets [5] and using the standard molecular mean excitation 
energies of Janni [6], a single mean excitation energy for each of 
the solar planetary atmospheres can be calculated. The molecular 

mean excitation energies used were: 0 39.10HeI eV= , 2
0 20.40HI eV= , 

2
0 115.7OI eV= , 2

0 115.7OI eV=  and 2
0 102.35COI eV= . 

The results for the mean excitation energies of the atmospheres for 
the solar planets are given in the Table 1. 

It should be noted that trace atmospheric components (<1%) were 
not included, as inclusions make very small differences in the mean 
excitation energies of the atmosphere, and even smaller differences in 
the values of 1n I0, which is the quantity that governs energy deposition 
by swift, massive particles in the atmospheres. For example, the mean 
excitation energy for Earth’s atmosphere, without including the 1% Ar 
is 101.89 eV, leading to a difference of 0.59 in I0 and 0.006 in 1n I0.

Thus, energy deposition by auroral hadrons in planetary 
atmospheres, such as, for the many newly discovered Goldilocks 
planets, may be accurately estimated from the projectile flux and 
planetary composition.
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Planet Atmospheric
composition I0 (eV)

Mercury 98% He
2% H2 38.59

Venus 96.5% CO2

3.5% N2 102.24

Earth
78.1% N2

20.9% O2

1% Ar
102.48

Mars
95.3% CO2

2.7% N2

2% Ar
103.25

Jupiter, Saturn 
Uranus, Neptune

89% H2

11% He 24.43

Table 1: Mean excitation energies of the atmospheres of the solar planets
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