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ABSTRACT

Glioblastoma (GBM) is the most common and aggressive primary tumor of the central nervous system with high 
recurrence and extremely poor prognosis. Multiple recent studies have indicated a pivotal correlation between 
GBM prognosis and immune-related risk signature. Nevertheless, the potential value of Endothelial Cells (EC’s) 
Immune-Related Genes (EIRG’s) in prognosis, immune infiltration, and their correlation with therapeutic response 
to immunotherapy and TMZ chemotherapy remain obscure, especially in GBM. Here, we screened out 11 EIRG’s 
after intersecting the identified 59 GBM EC’s related prognostic genes and the identified 438 immune-related 
prognostic genes. A prognostic-related 6-EIRG’s signature was established through univariate Cox analysis and 
Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis, and patients in the high-
risk group were significantly worse Overall Survival (OS) compared to those in the low-risk group. Additionally, 
univariate and multivariate Cox regression analysis confirmed that risk score was an independent predictor of OS 
in patients with GBM. The nomogram which comprised age, gender, IDH mutation status, radiation therapy, and 
risk score yielded a strong predictive ability of 0.5, 1, and 2 years OS for GBM patients. Our results demonstrate 
that the EIRG’s signature, which is associated with immune cell infiltration, may play a regulatory role in the 
immunobiological process of TIME (Tumor Immune Micro Environment). Prognostic-related 6-EIRG’s signature 
is a promising classification index for predicting the drug sensitivity to immunotherapy and TMZ chemotherapy, 
suggesting that EIRGs signature may serve as a biomarker to stratify patients who will benefit from immunotherapy 
and chemotherapy.
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INTRODUCTION

Glioblastoma (GBM) is the most common and aggressive primary 
tumor of the central nervous system, which is characterized by a high 
degree of intra-tumoral heterogeneity and resistance to treatment 
[1-3]. Despite recent advances in multimodal standard therapy, 
including surgical resection, radiotherapy, and Temozolomide 
(TMZ) chemotherapy, and immunotherapy, the prognosis of 
patients with GBM is still poor, with a median survival time of 
around 15 months [4-6]. So far, the alkylating drug Temozolomide 
(TMZ) is the mainstay of first-line chemotherapy for the treatment of 
GBM, but drug resistance to TMZ chemotherapy and drug delivery 
across the Blood-Brain Barrier (BBB) are the major obstacles to the 
effective treatment of GBM [7,8]. Additionally, growing evidence 
has indicated that immunotherapy has revolutionized the treatment 
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of many solid-tumor malignancies and generated great hope for 
GBM, but without success until now [9-11]. Therefore, novel 
biomarkers that can predict the drug sensitivity to immunotherapy 
and TMZ chemotherapy in GBM should be sought. Meanwhile, 
the Tumor Immune Micro Environment (TIME) also plays a 
critical role in tumorigenesis, progression, therapeutic efficacy, 
and clinical outcomes of GBM patients [12-14]. Thus, elucidating 
the role of the components and signatures of the tumor immune 
microenvironment and the interaction between cancer cells and 
the TIME may help to understand the pathogenesis of tumors and 
guide the development of novel therapeutic interventions.

Cerebral Endothelial Cells (EC’s) are the major components 
of the BBB. EC’s are connected by complex tight junctions and 
exhibit very low levels of vesicular transcytosis, leading to a very 
low vascular permeability [15,16]. Additionally, EC’s exert the 
barrier characteristics of the BBB in binding and efflux of various 
small lipophilic foreign compounds and drugs through the 
specific transport network of efflux transporters, thus limiting 
the development and absorption of neurotherapeutic drugs [17]. 
Tumor heterogeneity complicates the treatment of patients with 
cancer [18], therefore, we should further understand how EC’s 
affect the prognosis of cancer and how it fosters the emergence 
of drug resistance, so as to provide novel breakthroughs and 
therapeutic strategies for targeted cancer therapy in the future. 
Of note, Xie et al. have explored the heterogeneity of the human 
BBB and its molecular alteration in GBM by scRNA-seq–based 
molecular atlas of human brain EC’s [19]. A previous study has 
revealed that the 1p/19 codeletion-associated immune prognostic 
signature could accurately predict the prognosis of glioma [20]. 
Moreover, our earlier study had demonstrated that Immune-
Related Gene Pairs (IRGP’s) signature, which is associated with 
immune cell infiltration, can be used for individual OS predictions 
for glioma patients [21]. Nevertheless, little is known about how 
ECs-Immune-Related Genes (EIRG’s) affect GBM prognosis and 
how the relationship between EIRG’s and infiltrating immune cells 
in the TIME, and their correlation with therapeutic response to 
immunotherapy and TMZ chemotherapy.

This study was conducted with an aim to identify EIRG’s, whose 
expression is correlated closely with the prognosis of GBM patients 
in The Cancer Genome Atlas (TCGA) database. To further assess 
the prognostic value of these prognostic-related EIRG’s, univariate 
Cox regression analysis and LASSO Cox regression analysis were 
performed to construct a ECs-immune-related gene prognostic 
model to facilitate the prediction of GBM prognosis. Subsequently, 
a validation model from the Chinese Glioma Genome Atlas 
(CGGA) database was constructed to evaluate the feasibility of the 
risk signature based on the ECs-immune-related genes. Moreover, 
we analyzed the abundances of the tumor-infiltrating immune cells 
in GBM samples between the risk groups to explore the association 
between prognostic-related EIRG’s and the Tumor Immune Micro 
Environment (TIME). Finally, we explored these EIRG’s signature 
association with therapeutic response to immunotherapy and TMZ 
chemotherapy.

MATERIALS AND METHODS

Data acquisition

The RNA-seq transcriptome data and corresponding clinical data 

of GBM patients were downloaded from The Cancer Genome Atlas 
(TCGA, https://portal.gdc.cancer.gov/) and the Chinese Glioma 
Genome Atlas (CGGA, http://www.cgga.org.cn) databases. The 
374 GBM endothelial cells (ECs) related genes were acquired from 
the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/) database (GSE162631) and the 2333 immune-related 
genes were downloaded from the Immunology Database and 
Analysis Portal (ImmPort) database (https://www.immport.org/
home).

Construction of EC-immune-related genes (EIRGs) risk 
model

Univariate Cox regression analyses with P-value<0.05 were 
performed to identify 59 GBM ECs related prognostic genes 
and 438 immune-related prognostic genes. To screen the EIRGs 
for GBM patients, the above-identified EC’s related prognostic 
genes and immune-related prognostic genes were intersected in 
the TCGA and CGGA datasets. From this, we identified a total 
of 11 prognostic EIRG’s, with a statistically significant correlation 
(P<0.05), which we developed as a potential risk signature for 
the selection of candidate risk EIRGs with the LASSO Cox 
regression analysis. The TCGA set was utilized to construct an 
EIRGs-related prognostic model, and the CGGA set was used to 
validate the prognostic accuracy of this established model. Finally, 
6 EIRGs with their coefficients (β) were determined according to 
the minimum criteria. Risk score for each patient in the TCGA 
and CGGA cohorts were calculated according to the following 
formula: Risk score=(expression of gene A1*β1)+(expression of 
gene A2*β2)+(expression of gene A3*β3)+... (Expression of gene 
An*βn). Then, we divided patients into two groups: the high-risk 
group and the low-risk group based on the median value of the 
risk score. The Kaplan-Meier survival analysis was used to evaluate 
the differences in Overall Survival (OS) between high and low-risk 
score groups by using the "survival" R package.

Independence of the prognostic-related EIRGs risk model 
and nomogram analysis

Additionally, univariate and multivariate Cox regression analyses 
were used to determine whether the EIRGs-related risk scores 
were independent of other clinicopathological and molecular 
features (age, gender, IDH mutation status, radiation therapy, 
and risk score) as independent predictors for patients with 
GBM. Nomogram analysis for predicting the probability of 0.5-, 
1-, and 2-year OS for GBM patients by integrating risk score and 
clinical features (age, gender, IDH mutation status, and radiation 
therapy) was constructed and verified in the TCGA cohort as 
well as CGGA cohort using the “rms” R package. Moreover, we 
plotted the calibration curve to validate the predictive accuracy and 
reliability of the nomogram. Afterward, heatmaps were drawn to 
investigate the correlation between EIRGs-related risk scores and 
clinicopathological and molecular features using the “Complex 
Heatmap” R package [22].

Evaluation of tumor microenvironment infiltration 
patterns and immune cells infiltration

The stromal score, immune score, estimate score, and tumor 
purity were calculated with the ESTIMATE algorithm using 
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the “estimate” R package [23]. Subsequently, to investigate the 
immune infiltration landscape of GBM, we utilized the ssGSEA 
(Single Sample Gene Set Enrichment Analysis) to assess 23 types of 
tumor-infiltrating immune cells and further revealed a correlation 
between tumor-infiltrating immune cells and different risk 
groups. Subsequently, the 'GSVA' R package (v.1.38.2) was used 
for ssGSEA to evaluate immune-related functions or pathways 
between high-risk and low-risk groups [24]. And then, Gene Set 
Enrichment Analysis (GSEA) of prognosis-related EIRGs signature 
was performed for the assessment of the enrichment of biological 
processes and pathways among high-risk and low-risk groups [25]. 
The KEGG gene sets (c2.cp.kegg.v7.4.symbols.gmt), Go-Biological 
Processes (GO.BP) gene sets (c5.go.bp.v7.4.symbols.gmt), and 
HALLMARK gene sets (h.all.v7.4.symbols.gmt) were downloaded 
from the Molecular Signatures Database (MSigDB, http://www.
gsea-msigdb.org/gsea/downloads.jsp) to run the GSEA analysis.	
 The“clusterProfiler” R package (V3.18.1) was used to perform the 
top 10 functional annotations and pathway analysis on KEGG, 
GO, and hallmark pathway on EIRGs with an adjusted p<0.05, 
and FDR<0.05 [26].

Therapeutic response prediction

The Tumor Immune Dysfunction and Exclusion (TIDE) score of 
patients with GBM from the TCGA dataset was downloaded from 
the TIDE website (http://tide.dfci.harvard.edu/) for predicting 
the response to immunotherapy. Higher TIDE predictive scores 

were associated not only with greater potential of tumor immune 
evasion but also with worse immunotherapy response. The 
correlation between the identified EIRGs signature and Drug 
response was predicted by CellMiner (https://discover.nci.nih.gov/
cellminer/home.do). To examine the sensitivity of each sample to 
chemotherapeutic response to TMZ, the "pRRophetic" R package 
was utilized to predict the half-maximal inhibitory concentration 
(IC50) of TMZ for the comparison of the different risk groups [27]. 
P<0.05 was considered statistically significant.

RESULTS

Identification of GBM endothelial cells (EC’s) immune-
related genes

The detailed workflow of the risk model construction and 
downstream analysis is shown in Figure 1. As shown in the Venn 
diagram, a total of 11 prognostic EC’s immune-related genes 
(EIRG’s), which were indicated to have significant prognostic 
value (P<0.05), were screened out after intersecting the identified 
59 GBM EC’s related prognostic genes and the identified 438 
immune-related prognostic genes (Figures 1c and 2a). Subsequently, 
we performed to investigate the correlation among the identified 
EIRG’s with a threshold of correlation coefficient was 0.2. The 
correlation analysis results in this study showed that both SBDS 
and RBP1 were negatively correlated with PLXND1, while other 
EIRGs exhibited different positive correlation (Figure 2b).

Figure 1: Flow chart of this study.
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Construction and validation of the prognostic-related 
6-EIRG signature

To build the EIRG’s signature for forecasting the OS of GBM 
patients, we performed the least absolute shrinkage and selection 
operator (LASSO) Cox regression analysis on the basis of the 
11 prognostic EIRGs in the TCGA cohort. Next, we identified 
6 prognostic-related EIRGs (PLXND1, CALCRL, RBP1, SBDS, 
CFH, and SOCS3) to build the risk model, and the coefficients 
of these genes were used to calculate the risk score (Figure 3a). 
The risk score=PLXND1 × 0.0521+CALCRL × (-0.0292)+RBP1 
× 0.0878+SBDS × 0.0912+CFH × 0.0656+SOCS3 × 0.0831. 
According to the median value of the risk scores, GBM patients 
were divided into the high-risk group and low-risk group, and then 
performed Kaplan-Meier survival analysis. Risk score, survival 
status distributions, and the relative expression standards of the 
6 prognostic-related EIRG’s for each patient are shown in Figure 
3b. The Kaplan-Meier survival analysis showed that patients in the 
high-risk group displayed worse Overall Survival (OS) compared 
to those in the low-risk group (P<0.001), indicating that the risk 
score could predict the prognosis in the TCGA cohort (Figure 3c). 
To validate the prognostic ability of the prognostic risk model, 
we calculated risk scores for GBM patients in the CGGA cohort 
using the same formula (Figure 3d). The results of the Kaplan-
Meier survival curve in the CGGA cohort were consistent with 
our findings in the TCGA cohort: GBM patients in the high-risk 
group had significantly worse OS than those in the low-risk group 

(P<0.001), which made our results convincing (Figure 3e).

Evaluation the correlation between risk score and the 
clinicopathological characteristics

The heat map shows clinical characteristics and the expression of 
the 6 prognostic-related EIRG’s in high and low-risk patients in 
the TCGA cohort (Figure 4a). We observed significant differences 
between the high and low-risk groups associated with IDH 
mutation status, stromal score, immune score, estimate score as 
well as tumor purity. To determine whether the prognostic value 
of the 6 prognostic-related EIRG’s signature-based risk score is 
independent of other clinical features, univariate and multivariate 
Cox regression analyses were performed to analyze with risk score 
and other clinical features, such as including age, gender, IDH 
mutation status, and radiation therapy. Univariate and multivariate 
Cox analysis indicated risk score remained to be an independent 
prognostic factor P<0.05 (Figures 4b and 4c).

Nomogram establishment and evaluation

As shown in Figures 5a-5d, a nomogram for predicting 0.5, 1 and 
2-year survival rates of GBM patients was established according 
to age, gender, IDH mutation status, radiation therapy, and risk 
score. The C-index of the prognostic nomogram was 0.707, and 
the calibration curve of the 0.5, 1 and 2-year OS indicated that our 
nomogram model had a good predictive ability. Importantly, we 
found similar results in the CGGA cohort (Figures 5e-5g).

Figure 2: Identification and screen of GBM Endothelial Cells (ECs) Immune-Related Genes (EIRGs). (a): The intersection of the 
identified 59 GBM ECs related prognostic genes and the identified 438 immune-related prognostic genes; (b): The correlation 
analysis among the identified EIRGs; (c): Univariate analysis of the identified 11 EIRGs in patients with GBM.
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Figure 3: Construction and analysis of risk signature for GBM patients based on prognostic-related EIRGs. (a) LASSO Cox regression 
analysis of 11 prognostic- related EIRGs; (b)The distributions of survival status, risk scores, and expression of six prognostic-related 
EIRGs in the TCGA cohort; (c) Kaplan-Meier curve analysis between the high-risk group and low-risk group was performed in the 
TCGA cohort; (d) The distributions of survival status, risk scores, and expression of six prognostic-related EIRGs in the CGGA 
cohort; (e) Kaplan-Meier curve analysis between the high-risk group and low-risk group was performed in the CGGA cohort. EIRGs: 
GBM endothelial cells (ECs) immune- related genes; LASSO: Least Absolute Shrinkage and Selection Operator. Note: Risk: ( ) 
High risk; ( ) Low risk.

Figure 4: (a): Assessment of the prognostic risk model of the prognostic- related EIRG’s and clinicopathological features in the TCGA 
cohort. (b): Heat map of the associations between the expression levels of the six prognostic-related EIRG’s and clinicopathological 
features (***P<0.001; **P<0.01; *P<0.05). Validation of the independence of the prognostic-related EIRG’s signature in OS through 
the Univariate cox regression analysis; (c): Multivariate cox regression analysis. Note: Age: ( )<60, ( )>60; Gender: ( ) Female, (
) Male; ICH Mutations: ( )Mutant, ( ) Wild type; Radiation therapy: ( )No, ( ) Yes; Survival Status: ( )Alive, ( ) Dead; Immune 
Score: ( ) High, ( )Low, Stromal score: ( ) High, ( ) Low; Estimate Score: ( ) High, ( ) Low; Tumor purity: ( ) High, ( ) Low; Risk: (
)High, ( ) Low.
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Figure 5: Construction and evaluation of prognostic nomogram. (a): A nomogram integrating the signature risk score with the clinicopathological 
characteristics in the TCGA cohort; (b-d): The calibration plot of the nomogram predicts the probability of the 0.5, 1, and 2-years OS in the TCGA 
cohort; (e-g): The calibration plot of the nomogram predicts the probability of the 0.5, 1, and 2-years OS in the CGGA cohort.

Estimation of the tumor immune microenvironment 
using the prognostic-related EIRGs risk model

As shown in Figure 6a, the immune, stroma, and ESTIMATE scores 
were significantly higher (p<0.05) whereas tumor purity was lower 
in the high-risk group compared with the low-risk group (p<0.05). 
To elucidate the difference in the immune microenvironment of 
GBM, we analyzed immune cell infiltrating density between high 
and low-risk groups. The results indicated that high immune 
infiltration was strongly related to the high-risk group (Figure 
6b). Consistent with our previous results, the risk score of the 
prognostic model had a significant positive correlation with 
immune cells infiltration, including regulatory T cell (T

reg
), Th1 (T 

helper cell, type 1), activated dendritic cell, macrophages, Mast cell, 
NK natural killer T cells (NKT), MDSCs, and neutrophils (Figure 
6c). Notably, the results from the correlation analyses showed that 
the risk score was positively correlated with activated CD4+ T 
cells, activated CD8+ T cells, activated B cells, activated dendritic 
cells, macrophages, regulatory T cells (T

reg
), and natural killer cells 

(P<0.05) (Supplementary Figure 1). Among the 29 immune gene 
sets, immune-related functional cells such as activated dendritic 
cells (aDCs), B cells, DCs, Interdigitating Dendritic Cells (IDCs), 
macrophages, neutrophils, T helper cell, follicular helper T cells 
(Tfh), Th1 cells, Th2 cells, and regulatory T cells (T

reg
) showed 

higher ssGSEA scores in the high-risk patients (Figure 6d). Similarly, 
immune pathways such as Antigen-Presenting Cell (APC) co-
inhibition, APC co-stimulation, CC Chemokine Receptor (CCR), 
Check-point, cytolytic activity, Human Leukocyte Antigen (HLA), 
inflammation-promoting, para-inflammation, T-cell co-inhibition, 
T-cell co-stimulation, Type II IFN Response, and Tumor-Infiltrating 
Lymphocytes (TIL) exhibited higher ssGSEA scores in the high-risk 
group (Figure 6d). Additionally, similar results were obtained in the 
CGGA cohort of GBM patients (Supplementary Figures 2 and 3). 
These data indicated that the 6 prognostic-related EIRG’s signature 
were highly associated with immune infiltration.

GSEA analysis of 6-EIRG’s signature

Next, GSEA analysis was performed to assess the involvement of 

biological processes, immune-related pathways, and cancer-related 
hallmarks of each GBM sample. The top 10 KEGG pathways, 
GO biological processes (GOBP), and hallmark gene sets were 
identified based on the P-value<0.05 in the TCGA and CGGA 
cohorts. The GSEA analysis showed that most of the KEGG 
pathways, GOBP, and hallmark gene sets enriched in the high-
risk group were associated with the immune and inflammatory 
responses as well as the cancer-related pathway, including Toll-like 
receptor signaling pathway, JAK/STAT signaling pathway, NOD-
like receptor signaling pathway, IL-2-STAT5 signaling pathway, 
IL-6-JAK-STAT3 signaling pathway, TNFA signaling via NFKB, 
inflammatory response, activation of the immune response, and 
others in the TCGA and CGGA cohorts (Figures 7a and 7b). These 
findings indicate that prognostic-related EIRG’s may take part 
in regulating the tumor immune environment and immunologic 
biological processes of GBM.

Sensitivity of different therapies in the high and low-risk groups

Next, we further predicted the likelihood of response to 
immunotherapy in the high-risk and low-risk groups using the 
TIDE algorithm. TIDE scores were significantly higher in the 
high-risk group compared with the low-risk group, which indicated 
the low-risk group was much more sensitive to immunotherapy 
(Figure 8a). Subsequently, we found that GBM patients with 
high-risk group exhibited higher Microsatellite instability (MSI) 
and Dysfunction, and lower expression of Exclusion compared to 
the patients with the low-risk group (Figure 8b-8d). Additionally, 
a significant correlation relationship between the expression 
level of the key EIRGs and chemotherapy drug sensitivity are 
displayed in Figure 8 and ranked by the p-value, selected by p<0.05. 
Notably, SOCS3 was positively correlated with the sensitivity of 
Bleomycin, Sonidegib, Irofulven, and Olaparib and the resistance 
of Selumetinib, Encorafenib, Cobimetinib, and ARRY-162. Highly 
expressed PLXND1 were more resistant to Palbociclib (Cor=-0.366, 
p=0.004) and METHOTREXATE (Cor=-0.355, p=0.005) (Figure 9).
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Figure 6: Evaluation of risk signature of GBM immune microenvironment in the TCGA cohort. (a) immune, Stroma, and 
ESTIMATE scores and tumor purity in the high-risk and low-risk groups; (b) The abundance of 23 immune cells in the high-risk and 
low-risk groups; (c) Pearson correlation analysis between the risk score and the level of immune cell infiltration; (d) The correlation 
between immune-related functional cells, immune pathway functions, and expression of six prognostic -related EIRGs. Note: a: Risk 
( ) High, ( ) Low; b: Risk ( ) High, ( ) Low; d: Risk ( ) High, ( ) Low.

Figure 7: Immunotherapy response prediction in the high-risk and low-risk groups. (a) TIDE, (b) MSI, (c) Dysfunction, and (d) 
Exclusion prediction score between high- and low-risk patients. MSI: Microsatellite instability; TIDE: Tumor Immune Dysfunction 
and Exclusion. Note: ( ) Low, ( ) High.
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Figure 8: The correlation between chemotherapy drug sensitivity and the key EIRG’s (SOCS3, PLXND1, and CALCRL) in TCGA 
cohort. The scatter plots are ranked by the p-value, selected by p<0.05. 

Figure 9: Association between risk score and chemo sensitivity of TMZ in GBM. (a): The risk score was significantly positively 
correlated with the TMZ in the TCGA cohort; (b): The estimated IC50 corresponding to the high-risk group was significantly higher 
than that of the low-risk group in the TCGA cohort;(c): The risk score was significantly positively correlated with the TMZ in the 
CGGA set;(d): The estimated IC50 corresponding to the high-risk group was significantly higher than that of the low-risk group in 
the CGGA set. IC50: half-maximal inhibitory concentration; TMZ: Temozolamide. Note: risk ( ) High; ( ) Low.



9

Liu F, et al. OPEN ACCESS Freely available online

Immunotherapy (Los Angel), Vol.8 Iss.3 No:1000196

Afterwards, we further explore the differences in the treatment 
response to temozolomide (TMZ) chemotherapy in the high and 
low-risk groups. The risk score was significantly positively correlated 
with the TMZ (P<0.05). The estimated IC50 corresponding to the 
low-risk group was significantly lower than that of the high-risk 
group, indicating that GBM patients from the low-risk group were 
more sensitive to TMZ P<0.05. Notably, we observed similar results 
in the CGGA cohort. These results indicated that the prognostic-
related EIRG’s signature could predict the treatment response 
to immunotherapy and TMZ chemotherapy, and guide effective 
therapy.

DISCUSSION

GBM is the most aggressive and lethal primary brain tumor 
with heterogeneous clinical features and a generally poor clinical 
outcome [28]. The treatment of GBM remains a great clinical 
challenge using temozolomide (TMZ) based on conventional 
chemotherapy and is mainly due to drug resistance [29]. Previous 
studies have reported that Xie et. al have performed scRNA-seq 
on GBM EC’s to characterize the heterogeneity of gene expression 
signatures of different ECs, which will provide key information 
for designing rational therapeutic regimens and optimizing drug 
delivery [19]. However, little is known about the prognostic-related 
EIRGs signature with tumor immune microenvironment and 
drug sensitivity to immunotherapy and TMZ chemotherapy. In 
this study, we successfully constructed a prognostic risk signature 
with six identified prognostic-related EIRG’s (PLXND1, CALCRL, 
RBP1, SBDS, CFH, and SOCS3), which divided GBM patients 
into high and low-risk groups. Multivariate Cox regression analysis 
showed that prognostic-related EIRGs signature-based risk score 
was an independent prognostic factor for OS (HR: 5.207; 95% CI: 
1.338-20.260; P<0.05) after adjusting for other clinical variables. 
Moreover, combining risk score with age, gender, IDH mutation 
status, and radiation therapy, we constructed a nomogram, and it 
had a robust ability to predict 0.5-year, 1-year, and 2-year OS in 
GBM patients.

Tumor formation involves the co-evolution of neoplastic cells 
together with the TME surrounded by extracellular matrix, tumor 
vasculature, and immune cells, which may constitute the basis of 
tumor micro environmental heterogeneity due to the diversity of 
these cells [30]. Numerous studies had confirmed that immune 
infiltration is related to the prognosis of GBM, and tumor 
immune microenvironment significantly influences therapeutic 
response and clinical outcome [31,32]. Intratumor heterogeneity 
remains a major obstacle for more effective anti-cancer therapy and 
personalized medicine [33]. Multiple recent studies have shown that 
the heterogeneity of stromal cells and immune cells in the TIME 
also plays a critical role in cancer cell proliferation, angiogenesis, 
immune evasion, metastasis, and responses to treatment [34]. In 
our study, we have demonstrated that patients in the high-risk 
group had higher immune, stroma, and ESTIMATE scores, lower 
tumor purity, and a higher abundance of immune cell infiltration. 
Additionally, the GSEA analysis for the 6 EIRG-signature suggested 
that patients in the high-risk group were significantly enriched 
in biological processes, immune-related pathways, and cancer-
related hallmarks, including immune responses (Toll-like receptor 
signaling pathway, TNFA signaling via NFKB, IL2-STAT5 signaling, 
IL6-JAK-STAT3 signaling, inflammatory response, and interferon-
gamma response), cellular stress (hypoxia and apoptosis), and signal 

transduction (JAK/STAT signaling pathway and cytokine-cytokine 
receptor interaction). Notably, JAK/STAT signaling pathway plays 
an important role in immune regulation, apoptosis, drug resistance, 
tumor proliferation, migration, and invasion in glioma [35,36]. 
Moreover, previous studies also demonstrated that hypoxia may 
represent an early sign for GBM recurrence, which might become 
useful in the development of new combined diagnostic-therapeutic 
approaches of recurrent GBM [37]. These results indicated that 
the prognostic-related EIRG’s risk signature was closely associated 
with immunologic biological processes and the regulation of tumor 
immune microenvironment in GBM.

Therapeutic resistance reflects active tumor evolution, and 
environment-mediated resistance reflects the dynamic interaction 
between tumor cells and their surrounding microenvironment [38]. 
A growing body of evidence has demonstrated that Temozolomide 
(TMZ) is the most commonly used chemotherapeutic drug used to 
treat GBM, and its function is mainly achieved by inducing DNA 
damage in tumor cell [39,40]. Nevertheless, most GBM patients 
are resistant to the drug TMZ [41]. In our study, we found that 
the estimated IC50 corresponding to the high-risk group was 
significantly higher than that of the low-risk group, suggesting that 
GBM patients from the high-risk group based on prognostic-related 
EIRG’s could be more resistant to TMZ chemotherapy drug, which 
may partially explain worse survival outcomes of patients in the 
high-risk group. Interestingly, patients in the low-risk group who 
exhibited lower TIDE scores showed more likely effectiveness for 
immunotherapy than the high-risk group, which indicated that 
patients from the high-risk group might have a higher chance 
of anti-tumor-immune escape. Our analysis demonstrates that 
prognostic-related 6-EIRGs signature is a strong discriminative tool 
for examining the sensitivity of GBM patients to immunotherapy 
and TMZ chemotherapy. Recent clinical and experimental studies 
have demonstrated that the neoadjuvant administration of PD-1 
blockade might generate enhanced antitumor immune responses 
and induce functional activation of tumor-infiltrating lymphocytes, 
which may represent a promising strategy in the treatment of GBM 
[42,43]. Additionally, Park et al. have reported that PD-1 blockade 
induces a long-term therapeutic response, and combination with 
TMZ further enhances antitumor efficacy [44]. Thus, in our study, 
by exploring the potential relationship between the risk stratification 
and drug sensitivity to immunotherapy and TMZ chemotherapy, 
we can further provide new insights and achieve optimal clinical 
benefit for the combination of targeted immunotherapy and TMZ 
chemotherapy in the GBM.

Remarkably, we are also aware of some limitations in this study. 
First, our prognostic model was constructed based on open 
accessed databases without our cohort. Second, the biological and 
regulatory mechanism of prognostic-related EIRGs in the GBM 
immune microenvironment and their interaction with tumor-
infiltrating immune cells needed to be further verified using more 
in vivo and in vitro experiments. Third, there were no recruited 
cohorts to verify the prognostic value of our prognostic-related 
EIRG’s risk signature and drug sensitivity to immunotherapy and 
TMZ chemotherapy in high‑ and low‑risk groups.

CONCLUSION

Collectively, our study provides a comprehensive insight for 
revealing the important role of prognostic-related EIRG’s in the 
prognosis, tumor immune microenvironment, and drug sensitivity 
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to immunotherapy and TMZ chemotherapy of GBM, which 
provides a new research strategy for the early diagnosis, treatment, 
and prognosis of GBM. We constructed a prognostic-related 
6-EIRG’s signature with good prognostic value and which can serve 
as an independent prognostic indicator for GBM. Notably, this 
is the first study to explore the relationship between prognostic-
related EIRG’s and TIME, and drug sensitivity to immunotherapy 
and TMZ chemotherapy in the GBM. Our results indicate that the 
risk stratification based on risk signature might help distinguish 
GBM patients that could benefit from immunotherapy and 
chemotherapy drug TMZ.
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