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Abstract
Cardiovascular disease remains the number one cause of morbidity and mortality in the world. With great 

advances in medical and interventional therapies, patients who suffer from acute myocardial infarction have a longer 
life expectancy than before, but gradually develop chronic heart failure in their later life due to irreversible loss of 
cardiomyocytes. So far, heart transplantation is the only therapeutic option for advanced heart failure. However, the 
shortage of donor organs largely limits its role as the gold standard therapy. In the past decades, stem cell-based 
regenerative medicine has been proposed as a promising approach for the treatment of heart failure based on 
numerous animal studies. A variety of potential stem cell types, including skeletal myoblasts and bone marrow-
derived stem cells, have been investigated in clinical trials for cardiac repair and regeneration, but have shown mixed 
results in heart functional improvement or life-threatening disadvantages such as ventricular arrhythmia. On the 
other hand, due to the advantages of autologous origin and cardiac-committed lineage, cardiac stem cell therapy has 
emerged as a promising cell-based strategy for treatment of HF. Thus, this review discusses the current therapies for 
heart failure and further focuses on stem cell therapy using different endogenous cardiac stem cells, purified by stem 
cell surface markers (e.g., c-kit or Sca-1) or derived from explants via the formation of cardiospheres. In addition, the 
potential effect of patient age on cell-based therapy for heart disease is discussed.
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Introduction
Cardiovascular disease is a leading cause of death worldwide 

and becomes increasingly prevalent in the elderly population [1]. 
Irrespective of the aetiology, most cardiovascular diseases eventually 
lead to heart failure (HF), which is progressive and irreversible. 
Clinically, therapeutic options available for patients in severe HF are 
limited. Thus, there is an urgent need for the development of a novel 
approach to treatment of advanced HF. 

In the last decade, a variety of stem cell types, including skeletal 
myoblasts, bone marrow-derived stem cells (e.g., bone marrow 
mononuclear cells), circulating progenitor cells and mesenchymal 
stem cells, have been utilized in the treatment of patients with AMI or 
chronic ischemic cardiomyopathy in clinical trials [2-5]. Unfortunately, 
previous clinical studies have presented mixed results and none of these 
cell types has been confirmed as the best candidate for cardiovascular 
disease therapy in clinical trials conducted to date [3-6]. 

With increasing evidence, endogenous cardiac stem cells (CSCs) 
represent an attractive and promising cell candidate for cardiac repair 
and regeneration due to their autologous origin, cardiac-committed 
fate, and ability to develop into three major myocardial lineages [7]. 
Hence, CSC therapy has emerged as a promising cell-based strategy 
for treatment of HF. Over the past few years, transplantation of CSCs 
has been shown to modulate the remodeling process, regenerate the 
damaged myocardium and improve heart function in animal models 
of myocardial infarction [8]. Recently, two phase I clinical studies, 
SCIPIO and CADUCEUS, using c-kit+ CSCs and cardiosphere-
derived cells (CDCs), respectively, confirmed early short-term safety 
and therapeutic efficacy (improvement in EF, reduced infarct size or 
increased viable myocardium) in patients with ischemic heart failure 
[9,10]. Although great advances have been seen in this field, many 
relevant questions remain unanswered such as the optimal cell dosage 
for treatment, best timing for cell transplantation and effect of patient 
age on cell-based therapy. In this review, we focus on current therapies 
of heart failure and recent research into resident cardiac stem cell 

subpopulations, including the relationship between patient age and 
regenerative capability of endogenous cells, thereby providing further 
insights into cardiac stem cell-based therapy as a potential strategy for 
heart failure treatment.

Heart Failure
According to the World Health Organization (WHO), 

cardiovascular diseases (CVDs) are the major cause of death globally, 
leading to an estimated 17.3 million deaths in 2008 [1]. Furthermore, 
despite modern advances in therapy and management, the number of 
annual deaths due to CVDs worldwide continues to increase; by 2030, 
it is expected that nearly 23.6 million people will die from heart diseases 
including HF [11,12].  

The majority of cardiovascular disease is composed of cardiac 
diseases which can be broadly divided into either ischemic (e.g., 
coronary artery disease and myocardial infarction) or non-
ischemic heart disease (e.g., valvular heart disease and hereditary 
cardiomyopathy). Regardless of the underlying cause, however, HF is 
the final common stage of many diseases associated with the heart [13]. 
Based on recent statistics, more than 900,000 people are living with HF 
in the UK, which represents about 5% of medical hospitalizations [14]. 
Approximately 5.8 million people are affected with HF in the USA and 
over 23 million worldwide [15]. Under medical treatment, 20-30% of 
HF patients die in the first year of diagnosis and 45-60% after 5 years, 
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respectively [11,16]. Thus, HF has become a major public health issue 
in terms of high mortality rate and enormous healthcare expenditure 
[17]. 

Current Therapies for Heart Failure
Medical therapy 

Standard pharmacological agents for HF include diuretics, 
angiotensin-converting-enzyme inhibitors (ACEIs), beta-blockers, 
angiotensin-receptor blockers (ARBs), and aldosterone antagonists 
[18]. The actions of these drugs are mainly through the modification 
of ventricular remodeling and the systemic responses (i.e., sympathetic 
and renin-angiotensin-aldosterone systems) [18]. Diuretics are useful 
in the management of fluid retention to relieve symptoms such as 
dyspnea [19,20]. As the first-line therapy, ACEIs have been shown to 
improve symptoms, reduce ventricular size and increase the ejection 
fraction (EF) modestly [19,20]. Like ACEIs, beta-blockers are also in 
the list of first-line drugs in patients with HF, which can increase the 
EF and relieve symptoms if tolerated. ARBs are similar in action to 
ACEIs in patients with chronic HF [21,22]. The use of the aldosterone 
antagonist (spironolactone) showed further reduction in symptoms, 
hospitalization and mortality in severe HF patients receiving a diuretic, 
an ACEI and a beta-blocker [23]. Other drugs, such as hydralazine/
isosorbide dinitrate and digoxin, can be prescribed to ameliorate 
symptoms and improve quality of life depending on patients’ needs 
[18].

Interventional therapy

Interventional therapy, which is less invasive than surgery, 
includes percutaneous transluminal coronary angioplasty (PTCA), 
implantable cardioverter-defibrillator (ICD) and biventricular cardiac 
pacing (cardiac resynchronization therapy; CRT), which could benefit 
patients with HF under certain circumstances. Elective PTCA improves 
symptoms and heart function in patients with ischemic HF and viable 
myocardium by coronary revascularization with or without the use 
of stents. ICDs were shown to reduce mortality in HF patients with a 
high risk of sudden cardiac death in a systemic review of randomized 
controlled trials [24]. Moreover, as many as one third of patients 
with severe HF develop intra-ventricular conduction delays, which 
are associated with dyssynchronized contraction of the left ventricle, 
resulting in inefficient pumping work [16-18]. Based on clinical 
randomized trials, CRT was shown to reduce symptoms, improve heart 
function and increase survival rate in selected patients, when added to 
optimal medical therapy [25-28]. Importantly, CRT did not lead to 
a reduction in mortality rate in patients with a relatively low risk of 
death [18]. As a result, the use of CRT is recommended in subjects with 
severe HF, an EF less than 35%, sinus rhythm and a wide QRS complex 
(>120 msec) [19,20]. 

Surgical therapy

Coronary artery bypass graft (CABG) is an effective treatment in 
patients with chronic ischemic cardiomyopathy, still suffering from 
angina or reversible myocardial ischemia, and leads to better outcomes 
than medical therapy [29]. The gold standard therapy for end-stage HF 
remains heart transplantation, which improves patients’ symptoms 
(95% symptom-free rate) and extends their life span with about 90% 
1-year survival and 60% 10-year survival [30,31]. Nevertheless, patients 
receiving heart transplantation require lifelong immunosuppression 
and  face the possibilities of severe post-operative complications, 
such as primary graft failure (PGF), and transplant vasculopathy [32]. 
Furthermore, only 5,000 heart transplants are carried out annually 

in more than 300 countries and, unfortunately, 10% of terminal HF 
patients on the waiting list for transplantation die every year because 
of limited organ supply and long waiting times [33,34]. Its impact 
is therefore epidemiologically trivial in light of a global population 
in need [35]. Mechanical circulatory support (MCS) with the left 
ventricular assist device (LVAD) has been used as bridge-to-transplant 
(BTT) or bridge-to-recovery (BTR) therapies over the past decade 
[31]. In addition, because of its efficacy in BTT and BTR and with the 
development of newer LVADs with continuous-flow pumps, the long-
term use for end-stage HF patients who are ineligible for transplantation 
(i.e., destination therapy; DT) is becoming more prevalent [36-38]. 
LVAD resulted in 1-year survival of nearly 80% and improvements in 
symptoms and quality of life in patients with advanced or end-stage 
HF [39]. However, the use of LVAD still causes around 5-10% peri-
operative mortality and is linked to frequent short- and long-term 
complications such as infection, bleeding and device failure [39].  

Limitations of current therapy for heart failure

Pathophysiologically, HF is characterized by an irreversible loss 
of cardiac myocytes and residual fibrotic scar tissue, which results 
in progressive deterioration of cardiac function [2]. Over the past 
decades, great advances in pharmaceuticals, device technology and 
surgery have alleviated symptoms, improved quality of life and reduced 
mortality in patients with cardiovascular disease [18]. However, apart 
from transplantation, the treatments available to date are unable to 
reverse the state of HF or prevent the progression to end-stage HF as 
the lost functional myocardium is not replaced by these approaches. 
Unfortunately, furthermore, the number of available donor organs [37] 
significantly restricts the definitive therapy - cardiac transplantation -. 
Accordingly, it is hoped to develop a novel therapeutic method that can 
efficiently repair and regenerate the damaged myocardium, eventually 
structurally and functionally restoring the heart. Recently, cell-based 
cardiac repair and regeneration with cell transplantation has emerged 
as a promising strategy that aims to replace cardiomyocyte loss after 
myocardial injury. 

Endogenous cardiac stem cells

Traditionally, the heart has been considered a terminally 
differentiated, post-mitotic organ without the capability of 
regenerating itself. However, this view has recently been questioned 
by the discovery of resident cardiac stem/progenitor cells in the heart 
of several species including mouse [40,41], rat [42,43], dog [44], pig 
[45,46] and human [47,48]. Furthermore, a study by Hsieh et al. using 
a genetic fate-mapping approach, demonstrated that CSCs replenished 
adult mammalian cardiomyocytes lost after injury due to myocardial 
infarction or pressure overload [49]. These different subpopulations of 
resident cardiac stem cells have been identified and classified based on 
their properties and various surface markers such as c-kit and Sca-1.

Types of Cardiac Stem Cells
Cardiac c-kit+ stem cells

C-kit (CD117), the tyrosine kinase receptor for the stem cell factor, 
was initially reported to be expressed on the surface of hematopoietic 
stem cells [50]. In 2003, Beltrami and colleagues described for the first 
time the discovery of a subpopulation of Lin- and c-kit+ CSCs in the rat 
heart, which are clonogenic, multipotent and capable of self-renewal 
[42]. Some cells of this population were found to co-express cardiac 
specific transcription factors such as Gata4, Gata5, Nkx2.5 and MEF2C, 
suggesting that they were at the early stage of differentiation committed 
to myocardial lineages. These c-kit+ cells showed remarkable potential 
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to differentiate into all cardiac lineages and regenerated the damaged 
myocardium in a rat model of MI [42]. Subsequently, Bearzi et al. 
developed methods for isolation and expansion of c-kit+ human 
CSCs (hCSCs) from small myocardial specimens. When injected 
into immunocompromised rats and mice, these cells differentiated 
into cardiomyocytes and improved the LV performance of infarcted 
hearts [51]. Some studies have shown that c-kit+ cells are triggered 
and regenerate new cardiomyocytes in response to pathological 
lesions [52,53]. In addition, endogenous c-kit+ cells can be activated 
to promote myocardial repair through the mediation of insulin-like 
growth factor-1 (IGF-1) and hepatocyte growth factor (HGF) [46,54]. 
Endogenous Lin- c-kit+ cells are very rare within the myocardium 
(on average, 1 in every 104 myocytes), which makes it imperative to 
isolate and expand c-kit+ cells for a certain period to generate clinically 
relevant numbers [42]. Nevertheless, it was reported that c-kit+ CSCs 
can be expanded through growth in culture beyond the population 
doubling limit of somatic cells (> 40) and long-term in vitro culture 
up-regulated Gata4 expression, resulting in enhanced cardiomyogenic 
differentiation [55]. Moreover, intracoronary transplantation of c-kit+ 
CSCs has been shown to reverse adverse remodeling, improve heart 
function (EF) and stimulate endogenous cardiac stem cells in infarcted 
rat hearts [56].

Because of the inspiring evidence in pre-clinical animal studies, the 
first phase I human clinical trial using endogenous c-kit+ stem cells in 
patients with ischemic heart disease has been initiated.  The SCIPIO 
trial by Bolli et al. was designed to examine the safety and efficacy of 
intracoronary delivery of autologous CSCs, comprising expanded c-kit-
expressing cells from right atrial appendages, in patients with ischemic 
cardiomyopathy. The initial results, published in the November 2011 
issue of Lancet, are encouraging, confirming the safety and feasibility, 
and providing the evidence which shows intracoronary infusion of 
autologous c-kit+ CSCs leads to a significant improvement in LV 
systolic function and a substantial reduction in scar size at one year 
follow up [9]. 

Cardiac sca-1+ stem cells

Sca-1 (stem cell antigen-1), a member of the Ly-6 family, was 
first described as one of the cell surface antigens expressed on 
hematopoietic stem cells [57]. Multipotent stem cells derived from 
bone marrow and skeletal muscles express Sca-1 [58-60]. Thereafter, 
several groups identified various heterogeneous subpopulations of Sca-
1+ cells based on different subsets of markers co-expressed with Sca-1 
[61]. In 2003, Oh et al. were the first to isolate Sca-1+/CD31+ stem cells 
from the adult mouse heart, which were negative for blood cell lineage 
markers, c-kit, flt-1, flk-1, CD34, and CD45, but expressed cardiac 
transcription factors such as Gata4, MEF2C and TEF-1. These cells 
could differentiate into cardiomyocytes with expression of cardiac-
specific genes (Nkx2.5, cTnI, and MHC) upon stimulation with the 
demethylation agent 5-azacytidine [62]. In addition, Matsuura et al. 
reported that a population of Sca-1+, c-kit+, CD34+ and CD45+ cells 
gave rise to spontaneous beating cardiomyocytes and the differentiated 
cells showed expression of cardiac transcription factors and contractile 
proteins when treated with oxytocin [63]. Transplantation of Sca-1+/
CD31- cells resulted in improved LVEF following MI by cardiomyocyte 
regeneration and myocardial neovascularisation through paracrine 
effects,  suggesting an in vivo therapeutic potential [64].  

Accumulating evidence in many studies has suggested that cardiac 
Sca-1+ stem cells from mouse heart are self-renewing, clonogenic, and 
multipotent, and have the potential to differentiate into cardiomyocytes 

both in vitro and in vivo [62,63,65,66]. However, the human equivalent 
of the murine Sca-1 surface marker has not yet been identified. Smits 
et al. isolated and expanded a population of cardiac-derived Sca-
1-like cells (human cardiomyocyte progenitor cells) from fetal and 
adult human hearts by clonal expansion or MACS isolation using the 
antibody targeted at mouse Sca-1. Furthermore, they demonstrated 
that these cells could be differentiated into beating cardiomyocytes 
with high efficiency (80-90%) after treatment with 5-azacytidine and 
vitamin C/transforming growth factor-β in a chronological order [67]. 
However, these cells are yet to be studied in a clinical trial. 

Cardiac side population cells

The side population (SP) cells, characterized by their ability to 
efflux Hoechst 33342 (a DNA-binding dye) via the transporter, ATP-
binding cassette sub-family G member 2 (ABCG2; CDw338), have been 
identified in several adult tissues such as bone marrow and skeletal 
muscle [68]. Hierlihy et al. were the first to report the existence of a 
cardiac SP cell population with stem cell-like activity and the potential 
of cardiomyogenic differentiation in the postnatal murine myocardium 
[69]. It has been shown that adult cardiac side population cells are 
heterogeneous in nature, consisting of distinct subpopulations of cells 
expressing c-kit, Sca-1, CD31, CD34, VE-cadherin, mesenchymal 
progenitors, vascular endothelial cells and cardiomyogenic precursors 
[70]. Several studies have reported that cardiac side population cells 
found in rodents are able to give rise to three major cardiac lineage 
cardiomyocytes, endothelial cells and smooth muscle cells in vitro 
[71-73]. In vivo, it was shown that these cells homed to the damaged 
myocardium and differentiated into three cardiac lineages when 
infused into adult rats [73]. Furthermore, Liang et al. demonstrated 
that a subset of cardiac SP cells (Sca-1+/CD31-) migrated to the injured 
site and gave rise to cardiomyocytes or endothelial cells through the 
SDF-1/CXCR4 system in a murine model of myocardial ischemia 
[74]. Cardiac SP cells have shown the potential for the commitment 
of cardiovascular lineages both in vitro and in vivo, however, more 
research is required to investigate their therapeutic effects on cardiac 
function upon transplantation into a myocardial ischemic model. 

Cardiospheres and cardiosphere-derived cells

Messina et al. described a method to culture cardiac stem cells 
via the formation of multicellular clusters, termed cardiospheres, 
from mouse heart explants and human ventricular biopsies.  These 
cardiospheres were clonogenic and expressed c-kit, Sca-1, and CD31, 
CD34, and Flk-1 based on immunophenotypic and flow cytometric 
analyses [40]. Mouse cardiospheres spontaneously contracted after 
their generation, but human cardiospheres were seen to beat only 
after coculture with rat cardiomyocytes, nevertheless, both indicated 
that these CSC populations have the potential to differentiate into 
cardiomyocytes. Furthermore, murine cardiospheres were shown to 
differentiate into cardiomyocytes with contractility as well as vascular 
cells when transplanted into the ischemic heart of immunodeficient 
mice [40].  

Subsequently, Smith et al. modified the protocol described by 
Messina’s group to substantially expand cardiosphere-derived cells 
(CDCs) in vitro and showed myocardial regeneration and functional 
improvement when these cells were injected into the infarcted mouse 
heart [48]. In contrast to other populations of CSCs, cardiospheres and 
CDCs have been reported to contain a mixed population consisting 
of c-kit+ and Sca-1+ cardiac progenitor cells, and cells expressing 
CD90 (cardiac mesenchymal-related) and CD31/CD34 (endothelial 
progenitor-related) markers [40,48,75,76]. Intracoronary delivery 
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of autologous CDCs led to the formation of new tissue, reduction in 
infarct size and improvement of haemodynamics in a pig model of 
ischemic cardiomyopathy [45].

Based on most experimental studies, however, it should be 
highlighted that the number of newly formed cardiac myocytes 
from transplanted stem cells is too small to be proportional to the 
improvement observed in heart function [56]. This phenomenon could 
be attributable to the combination of poor cell engraftment and low 
cardiomyogenic potential in vivo following the introduction of stem 
cells into the injured myocardium [77]. Alternatively, the paracrine 
hypothesis is now widely believed to play a major role in the beneficial 
action of transplanted stem cells via the secretion of various cytokines 
and growth factors, such as VEGF, HGF and IGF-1 [78-80]. It has 
been reported that in human CDC populations, unselected mixed 
CDCs significantly improved heart function in comparison to c-kit-
sorted CSCs, as determined by ejection fraction, when implanted into 
infarcted immunodeficient mice [81]. Furthermore, Chimenti et al. 
characterized potential actions of paracrine factors in human CDC 
transplantation and concluded that the contribution of the indirect 
effect rivals or exceeds that of direct myocardial regeneration [79]. In 
addition, Li et al. reported that human CDCs exhibited relatively high 
production of various growth factors, including angiopoietin-2, bFGF, 
HGF, SDF-1, IGF-1, and VEGF, and resulted in superior improvement 
of cardiac function compared with BM-MSCs, BM-MNCs and adipose 
tissue-derived MSCs [80]. 

Collectively, it is possible that the cardiac progenitor cells could 
readily engraft, differentiate and function when transplanted into the 
injured myocardium in the presence of cardiac mesenchymal stem 
cells and endothelial progenitor cells via synergistic paracrine effects 
[76,82]. In short, so far, cardiospheres and CDCs have been isolated 
and used for treatment of ischemic heart disease in various animal 
models, including mouse [40,75], rat [43,83], and pig [45,84], and 
shown evidence of new cardiomyocyte formation or beneficial effects 
on cardiac function.

After the accumulation of promising results, the CADUCEUS trial, 
led by Marban et al. aimed to investigate the effects of autologous CDC 
transplantation via the intracoronary route in patients with a recent 
MI and ischemic left ventricular dysfunction. The results, published in 
Lancet early in 2012, were that intracoronary infusion of autologous 
CDC contributed to significant increases in viable myocardium, 
regional contractility and regional systolic wall thickening despite no 
significant change in LVEF, which might be explained by the fact that 
EF at baseline was only moderately impaired (39%), leaving little room 
for improvement by 6 months [10]. Because of the positive findings, 
further research with longer follow-up and larger, phase 2 studies are 
required to confirm the true and persistent clinical benefits.     

Islet-1+ cardiovascular progenitors

Laugwitz et al. reported the identification of a subpopulation 
of cardiovascular progenitor cells in postnatal mouse, rat and 
human myocardium, which express an embryonic marker of LIM-
homeodomain transcription factor Islet-1 (Isl1) [85]. During cardiac 
development, Islet1+ progenitor cells, derived from the second heart 
field, contribute to the right ventricle, outflow tract and partial atria 
[86]. The number of these cells is very low at postnatal ages with between 
500 and 600 cells per heart [87]. As demonstrated by Itzhaaki-Alfia et 
al., cultured cells derived from right atrium, obtained from patients by 
surgery or endomyocardial biopsy, produced higher percentages of 
islet-1+ cell population (7%) compared with left atrium, right ventricle 

and left ventricle (varying from 1% to 2.8%) [88]. Islet-1+ progenitors 
are negative for c-kit, Sca-1 and CD31, but co-express the cardiac 
specific transcription factors Nkx2.5 and Gata4; importantly they have 
the potential to differentiate into smooth muscle cells, endothelial 
cells and fully functional cardiomyocytes [85,89]. Although Islet-1+ 
progenitor cells may represent an attractive cell source for cardiac 
repair and regeneration, previous studies showed that the Islet-1+ 
progenitor population rapidly declines shortly after birth, which 
may limit their clinical application in the adult patients [7,87,90,]. 
Interestingly, there are several recent studies showing that the number 
of islet-1+ cells in rat and mouse hearts remained steady from neonatal 
life up to adulthood, albeit at a very low level [91-93]. It is believed that 
further research could provide more insights into whether this type of 
stem cells is a possible source for future cardiac therapy.

Epicardium-derived stem cells
Another source of endogenous resident cardiac progenitor cells 

with regenerative potential for the adult heart is the epicardium, 
with several groups reporting the discovery of epicardium-derived 
myocardial and vascular progenitors in embryonic mouse and adult 
human heart [94-98]. During heart development, a subset of epicardial 
cells, known as epicardium-derived cells (EPDCs), delaminate from 
the epicardium and subepicardium and migrate into the myocardium 
through a process of epithelial-to-mesenchymal transition (EMT) prior 
to differentiation into specialized cells [99]. EPDCs are multipotent in 
both embryonic and adult hearts, capable of giving rise to adventitial 
fibroblasts, coronary smooth muscle cells, endothelial cells and 
cardiomyocytes [7,61,100].  

Adult human EPDCs were found to reduce remodelling and 
increase ejection fraction when transplanted into an immunodeficient 
mouse model of myocardial infarction [101]. Moreover, Smart et al. 
reported that the activation of quiescent EPDCs in the adult mouse heart 
can be enhanced using a naturally occurring protein called thymosin 
beta 4 (Tβ4; a small actin-binding protein that activates integrin-linked 
kinase). This stimulating factor releases the EPDCs from a dormant 
state and restores their progenitor cell potential with differentiation 
into cardiomyocytes after their migration to the damaged site of the 
heart [94,102]. Although the induction of cardiomyocyte differentiation 
by Tβ4 is not efficient at present, this strategy also provides another 
prospective means of stem cell-based cardiac therapy through in 
situ activation of resident cardiac progenitor cells by specific factors 
without additional complications of isolation and expansion ex vivo 
and possible problems like low retention and engraftment, relative to 
cell transplantation [7,103].         

Effect of age on isolation and function of cardiac stem cells
It has been proposed that there is a general decline in the number 

and/or function of stem cells with increased age in various stem cell 
types [104]. Hill et al. demonstrated an inverse correlation between 
the number of circulating endothelial progenitor cells and age [105]. 
Additionally, it has been suggested that increasing age resulted in 
a reduction of acquired cell number and angiogenic potential in 
adipose tissue-derived progenitor cells [106]. Likewise, some studies 
have shown a link between age and decreased self-renewing ability 
in endothelial progenitor cells [107], c-kit positive cells in the testis 
and epididymis of rats [108] and neural stem cells [109]. A study by 
Scheubel et al. also reported that aging inhibits endothelial progenitor 
cell mobilization in patients undergoing CABG [110]. Moreover, 
other researchers have suggested that aging is involved in mediating 
intrinsic characteristics of stem cells, such as cell growth, proliferation, 
differentiation, and senescence [77,111-114]. 



Citation: Hsiao LC, Carr C (2013) Endogenous Cardiac Stem Cell Therapy for Ischemic Heart Failure. J Clin Exp Cardiolog S11: 007. doi:10.4172/2155-
9880.S11-007

Page 5 of 5

ISSN: 2155-9880 JCEC, an open access journalCardiac Stem CellsJ Clin Exp Cardiolog

Clearly, epidemiological studies show that heart diseases are more 
prevalent among the elderly population [115]. From a clinical point 
of view, chronological aging is an inevitable fact and may link to the 
biological state of tissue-specific stem cells and the disease phenotype 
of patients [116, 117]. These issues potentially interfere with cell 
acquisition in terms of clinically relevant quantity and therapeutic 
potential. When considering the applications of autologous CSCs, 
therefore, it is important to understand the impacts of age on CSC 
isolation, expansion and regenerative potential. Using CDCs derived 
from mice, our lab found that the numbers of CDCs were significantly 
reduced from the older mice relative to the younger animals (aged 
from 1.5 to 24 months). In addition, the amount of cardiac stem cells, 
which expressed c-kit or Sca-1, was persistently down-regulated in 
CDC populations with increasing age (unpublished data). This is 
consistent with a human CDC study by Mishra et al., which confirmed 
that c-kit expression and CDC proliferation declined with advancing 
age ranging from neonates to teenagers [118]. Furthermore, the same 
group published another paper demonstrating that when injected into 
infarcted myocardium, neonatal-derived CDCs had a significantly 
higher regenerative potential compared with adult-derived CDCs [119]. 
Reduction of proliferative capacity and degeneration in differentiation 
potential were reported to be related to the shortening of telomeres and 
telomerase deficiency in aged haematopoietic stem cells [113,120,121] 
and Torella et al. found that the percentage of c-kit+ cells showing 
evidence of senescence expression (i.e., p16INK4a), shortened telomere 
length and apoptosis was elevated in older wild-type mice [122].

In fact, aging is extremely complex and involves multiple 
mechanisms at various levels (i.e., molecular, cellular, organic 
and organismal) [123]. Although the exact interactions between 
senescence-related signalling pathways remain to be ascertained, 
theories have been proposed to explain the aging process, including 
theories of somatic mutation, mitochondrial DNA (mtDNA) mutation 
and telomere loss [123]. Furthermore, a variety of intrinsic and 
extrinsic systems are involved in the regulation of stem cell number 
and biological performance along with aging, such as cell-to-ECM, 
telomere-telomerase, growth factor-receptor, and ROS-antioxidant 
defence systems [122,124]. For instance, the IGF-1/IGF-1 receptor 
(IGF-1R) system preserves the pool of endogenous CSCs through 
enhancing telomerase activity and delaying senescence by activating 
the PI3K-Akt pathway, indicating that IGF-1 may protect CSCs 
against adverse aging effects [122]. It has been shown that the IGF-1/
IGF-1R axis exists in cardiac stem cells in very old animals, but the 
IGF-1 synthesis and the IGF-1R expression are found to decrease in 
aging human CSCs [122,125,126]. In this regard, preconditioning of 
cultured resident CSCs in old age by over-expressing telomerase or 
up-regulation of favourable growth factor signalling may improve the 
regenerative capabilities of survival, growth and differentiation in vivo 
following transplantation [104,124,127]. Furthermore, in our group, 
hypoxic culture as a preconditioning treatment not only significantly 
increased cell yield but also enhanced telomerase levels and secretion 
of paracrine factors (e.g., VEGF and EPO) in rat CDCs (Tan et al. in 
review). In short, further understanding of the interactions between age 
and CSC characteristics has significant clinical implications to enhance 
the therapeutic ability of adult-derived CSCs in the use of stem cells for 
cardiac therapy [119].

Finally, it should be noted that CSCs can be cultured from 
failing human hearts, but pathological processes may influence the 
endogenous CSC pool function, as shown by Cesselli et al. [128]. In our 
lab, we found that CDCs could be produced from mice aged from 1.5 
to 24 months despite adverse effect of age on cell biological properties 

(unpublished). Likewise, Itzhaaki-Alfia and colleagues demonstrated 
that human c-kit+ CSCs can be isolated and expanded from the right 
atrium of most patients aged 50 to 75 years undergoing heart surgery, 
such as CABG, valve replacement and heart transplantation [88]. 
Furthermore, D’Amario et al. reported that c-kit+ CSCs isolated from 
the diseased myocardium (RV septum apex or LV apical region) in 
patients with advanced heart failure were functionally competent, as 
measured by telomere length and telomerase level, all indicating that 
autologous CSC therapy is realistic and can therefore be considered for 
use in the treatment of patients with severe heart failure [129]. 

Conclusions
In summary, it is nearly 10 years since the identification of 

endogenous cardiac stem cells. Based on numerous experimental 
studies and recent clinical trials, there has been growing evidence 
showing that cardiac stem cells can be grown as autologous cells for 
cardiac therapy, especially c-kit+ CSCs and CDCs, as demonstrated by 
feasibility, safety and functional improvement. Importantly, regardless 
of age or disease, cardiac stem cells have been isolated and expanded 
from the diseased heart from most patients [128,88,130]. This means 
that cell transplantation with autologous CSCs is a viable treatment in 
routine clinical practice. On the other hand, it is worthy of mention 
that among the various cardiac stem cells, CDCs comprise mixed 
subpopulations and can give rise to major cardiac lineages. In addition, 
CDCs are able to secrete a variety of cytokines and growth factors 
in support of paracrine effects. In the future, more basic research 
and large well-designed clinical studies are needed to further our 
understanding of underlying mechanisms of functional improvement 
and improve cell culture methods for optimal quality and quantity of 
adult-derived CSCs. With rapid progress in stem cell biology, in spite 
of huge challenges, the approach using cardiac stem cell-based therapy 
looks promising for treatment of patients with ischemic heart failure. 
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