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Introduction
The failure of the Black and Scholes [1] model to provide correct 

valuation is attributable to the parsimonious assumptions used to 
derive the model. One of the strong assumptions of the model is that 
security prices follow a constant variance diffusion process with log-
returns normally distributed whereas the constant variance assumption 
has always been rejected by many studies. 

The ARCH models literature set up by Engle [2] and Bollerslev [3] 
has been devoted to the volatile behavior of stock return variances. This 
empirical literature has proved the stochastic nature of stock return 
variances and their correlation with security price levels shoing that 
returns are both skewed and leptokurtic. The systematic deviations 
from the observed prices correspond to a “gap” in the option valuation 
as noticed Black (1975) when stating that “one possible explanation for 
this pattern is that we have left something out of the formula”. 

As Rubinstein [4] notice, the Black and Scholes [1] model tends 
to systematically misprice in-the-money and out-the-money options. 
Different studies lead to different conclusions knowing whether this 
model underprices deep-out-of-the-money and overprices deep-in-
of-the-money options or the contrary. Nevertheless, Rubinstein [4] 
concluded that the bias direction can change across different periods. 
The biases are not in the same direction for all markets and they 
are not constant over time. Observed moneyness biases constitute 
evidences against the hypothesis that asset returns are homoskedastic 
and normally distributed; this gave an impulse to the development of 
option pricing models for alternative processes.

The Constant Elasticity of Variance option pricing model of Cox 
and Ross [5] relax the constant volatility hypothesis and enabled 
the instantaneous conditional volatility of asset returns to depend 
deterministically upon the level of asset price. The implied binomial 
tree models of Dupire (1994), Derman and Kani (1994), and Rubinstein 
(1994) can be considered as flexible generalizations of the CEV model 
while the stochastic volatility option pricing models of Scott [6], 
Wiggins [7], Johnson and Shanno (1987) use numerical methods as 
the Monte Carlo simulations to price options when the variance varies. 

Hull and White [8] solve explicitly for the options price by using 
Taylor expansion. But to produce analytical results they imposed the 
correlation between increments to be null. They solve the case for non 
zero correlation through Monte Carlo simulations. Hull and White [9] 

*Corresponding author: Sofiane Aboura, Department of finance, University of 
Paris Dauphine, Place du Maréchal de Lattre de Tassigny, Paris Cedex 75775, 
France, Tel: 01 44 05 45 65; E-mail: sofiane.aboura@dauphine.fr

Received June 22, 2013; Accepted July 29, 2013; Published July 31, 2013

Citation: Aboura S (2013) Empirical Performance Study of Alternative Option 
Pricing Models: An Application to the French Option Market. J Stock Forex Trad 2: 
108. doi:10.4172/2168-9458.1000108

Copyright: © 2013 Aboura S. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
The mispricing of the deep-in-the money and deep-out-the-money generated by the Black and Scholes model 

is now well documented in the literature. In this paper, we discuss different option valuation models on the basis of 
empirical tests carry out on the French option market. We examine methods that account for non-normal skewness 
and kurtosis, relax the martingale restriction, mix two log-normal distributions, and allows either for jump diffusion 
process or for stochastic volatility. We find that the use of a jump diffusion and stochastic volatility model performs as 
well as the inclusion of non normal skewness and kurtosis in terms of precision in the option valuation.

Empirical Performance Study of Alternative Option Pricing Models: An 
Application to the French Option Market 
Sofiane Aboura*
Department of finance, University of Paris Dauphine, France

derive a model in series expansion form allowing for instantaneous 
correlation between stochastic volatility and the stock price. 

Stein and Stein [10] derive a closed-form solution when volatility 
is driven by an Ornstein-Uhlenbeck (AR1) process but with zero 
correlation between both increments. Heston [11] proposes a closed-
form solution, but with arbitrary correlation between volatility and 
spot returns. 

Jarrow and Rudd [12] approximate the log-normal probability 
distribution by an arbitrary distribution in terms of a series expansion. 
The idea is to derive an option pricing model expressed as the sum of 
the [1] formula plus adjustment terms permitting to capture the impact 
on the option price of the third and fourth moments of the underlying 
security stochastic process. In the same manner, Corrado and Su [13] 
derive and test empirically a European option pricing model that 
extends the [1] model to take into account for non-normal skewness 
and kurtosis in the distribution of stock returns. 

The skewness and kurtosis coefficients are estimated simultaneously 
along with the implied standard deviation. They find that the adjustments 
for skewness and kurtosis are effective in removing systematic strike 
price biases from Black-Scholes [1] model for S&P500.

The recognition that asset returns are leptokurtic, especially for 
short periods, incited [14] to look for option pricing through jump-
diffusion processes. Ball and Torous [15,16] propose a simplified 
version of the jump-diffusion model known as the as the Bernoulli 
Jump process. Later on, Maltz [17] fitted this model to market option 
price data in order to estimate the ex-ante probability distribution of 
exchange rates. Bates [18] fit a jump diffusion option pricing model to 
option data extracting implicit volatility, skewness and kurtosis.

Duan [19] develops a GARCH option pricing model capable of 
reflecting the changes in the conditional volatility using numerical 
simulation. Ritchken and Trevor [20] developed also an option pricing 
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Under risk-neutral measure, one can apply the density function 
g(z) to derive a formula for a European call as being the present value 
of an expected payoff at expiration. This call price is derived from the 
following expression:
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We obtain an option pricing call formula based on the Gram-
Charlier series as being:
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Implicit stock price adjusted model

The principle of the no-arbitrage approach is that the price of 
an option is obtained by taking the expectation of its discounting 
payoffs relative to a risk-neutral density. Arbitrage is not feasible in 
the condition that the risk-neutral density mean satisfy the martingale 
restriction. This restriction states that the price of the underlying 
asset implied by the option price must be the same that its observed 
market price, otherwise its should means the existence of arbitrage 
opportunities within a market with no frictions as shown by Harrisson 
and Kreps [25]. 

In the situation of frictions in the market, the option prices are 
determined by equilibrium and not by no-arbitrage reasoning, thus, the 
martingale restriction need not to be met. Among the frictions that can 
be encountered in the market, such as transaction costs or illiquidity, 
we can add information costs. The idea of estimating an implicit stock 
price is not recent. Manaster and Rendleman [26] is the first to invert 
[1] formula to estimate daily implied stock prices and daily implied 
volatility parameters. They concentrate their work around the idea of 
forecasting returns using the implied stock price.

They find that the implied stock price exceeds the observed price 
and affirmed that implied prices contain information regarding 
equilibrium stock prices that is not totally reflected in observed stock 
prices. One other reason to explain the difference between both 
stock prices was that transactions between both markets were not 
synchronous and thus, the difference represents more a recent rather 
than better information. 

However, if they find that the second hypothesis explains a large 
part theses differences, “it is still possible that a significant fraction of 
implied prices represents more recent information than observed stock 

model using a lattice algorithm to price both American and European 
options under discrete time GARCH processes. We recall that [21] 
showed that the GARCH model can be written as an approximation 
to certain diffusion equations which has been postulated in the option 
pricing literature. Duan, Gautier and Simonato [22] propose a series 
approximation to value American options for GARCH processes with 
one lag in the variance dynamics. Heston and Nandi [23] develop a 
closed-form option valuation formula for an asset whose variance 
follows a NGARCH process.

In this paper, we adopt Whaley’s [24] simultaneous equations 
procedure to estimate the implied parameters serving for the 
calculation of the option prices. This paper is organized as follows. 
Section 2 presents the models that are implemented. Section 3 gives 
details about sampling methodology. Section 4 displays the empirical 
results. Section 5 assesses the statistical performance of the models. 
Section 6 summarizes and concludes.

Option Pricing Models
We compare the out-of-sample performances of different option 

pricing models using the Black-Scholes [1] model as a benchmark.

Skewness and kurtosis adjusted model

The expansion methods are now largely used in quantitative 
finance. The idea is to start with an expansion formula for the risk 
neutral density considered as a general probability distribution. 
The first term of the expansion corresponds either to log-normal or 
normal distribution. The following terms can be therefore considered 
as successive corrections to the log-normal or normal approximations. 
The series is truncated at a finite order fixed empirically, which gives 
a parametric approximation of the risk neutral distribution. From 
this expression, we can derive an option pricing formula. The only 
drawback of this method is that when the infinite sum in the expansion 
represents a probability distribution, finite order approximations of 
it may become negative, leading to negative probabilities far enough 
in the tails, which generates severe mispricing for options that are far 
enough from the money. 

We follow the approach of Corrado and Su [13] in the use of a semi-
parametric option pricing formula. They use the Gram-Charlier series 
expansion to model the distribution of stock log-prices. This method 
focuses on the skewness and kurtosis deviations from normality. 
Stuart and Ord (1987) discussed the distinction between Edgeworth 
expansion and Gram-Charlier expansion. To obtain an option pricing 
formula that correct the bias of the Black-Scholes [1] model, they add 
to this formula, adjustment terms accounting for non normal skewness 
and kurtosis. For a density function f(x), the Gram-Charlier series 
expansions are defined as:

∑
∞

=

=
0

)()(
n
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φ(x) is a normal density function and H(x) are Hermite 
polynomials derived from successively higher derivatives of φ(x) while 
the coefficient Cn are determined by moments of the distribution 
function F(x). The Gram-Charlier series, which are infinite series, are 
here truncated to eliminate terms after the fourth moment. This turns 
out to be a good proxy for option pricing due to the consideration of 
non-normal skewness and kurtosis. A truncated series that take into 
account skewness and kurtosis gives the following density function 
with centered mean and reduced variance for the following density:
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prices”. Later on, Longstaff [27] carries out a similar test on what he 
called “the martingale restriction”. He uses S&P100 index options data 
from 1988 to 1989, with American call options for which the American 
exercise effect should be alleviated. He focuses on a five minute window 
from 2:00 PM to 2:05 PM using index values during this window.

He find that the implied S&P100 index cost is superior to the 
actual index cost for 442 cases out of 444 daily estimates by an amount 
of 1.004. He explaines that since an option can be seen as a levered 
position in the underlying asset, which means that purchasing a stock 
through the option market costs more than on the spot market. We 
intuitively understand that accessing to a derivative market implies 
additive costs such as transaction or information costs. 

Comparing the Black-Scholes [1] model with an equilibrium 
version of the model in which the martingale restriction is relaxed, he 
obtaines that, more than a half of the pricing errors occurring with the 
[1] model, is eliminated. We note that Patilea, Ravoteur and Renault 
(1995) propose an econometric approach based on the concept of 
implicit stock prices applied to the Hull and White [8] model and 
Renault [28] explains that introducing an implicit stock price may 
explain the skewness observed in the smile. 

In this paper, we don’t test the martingale restriction following 
the very same methodology of Longstaff [27], we just want to check 
whether relaxing the martingale restriction, i.e, estimating an implicit 
stock price, will improve in our context the option pricing. We don’t 
limit ourselves to a small time period window since we don’t have 
enough observations per window.

Mixture of lognormal distributions

Melick and Thomas [29] estimate option pricing as a mixture of 
log-normal densities. They consider that the risk-neutral density can 
be adjusted correctly as a mixture of various log-normal densitites, 
representing different views of future reality. This method integers a 
number M of log-normal distributions but we limit our case to the 
simple case M=2. We suppose the risk-neutral density being equal to: 
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and LN(St;m
Q,σ2t) is the log-normal density function under risk-

neutral measure. Within this configuration, the investors can imagine 
a situation for the future where, for instance, two configurations are 
expected, for which they affect two probabilities α1 and α2 and where 
the asset growth rate will be subject to two drift dynamics (μ1 and μ2) 
and two volatilities (σ1 and σ2). The call price of a mixture of log-normal 
densities can be written as:
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The advantage of the procedure is that the option prices are given 

as an average of the Black-Scholes [1] prices for different volatilities 

weighted by the respective weights of each distribution in the mixture. 
By construction, this mixture of log-normals has thin tails unless one 
allows high values of variance. As recall Campa, Chang and Reider 
[30], probability in the tails declines monotonically and always decays 
quickly enough for preventing unrealistic kurtosis. The only drawback 
of this procedure is that it is not supported by any theoretical economic 
background, which could lead to a lack of economic meaning. 

Stochastic volatility model

Hull and White [9] consider the following stochastic processes 
for the returns and for the volatility  through the risk-neutral data 
generating process given by:

    S
dS rdt V dZ
S

= +   

 ( )    VdV a bV dt V dZξ= + + 

where a, b, and ξ are constant and SdZ  and VdZ  are Wiener processes 
under risk-neutral probability and r is the instantaneous interest rate 
supposed constant. V is the asset’s instantaneous variance rate. In order 
to ensure that the drift rate of V will not be negative, it is required that 
a≥0. From the dynamic of the variance, we can obtain a constant drift 
with b=0, a constant proportional drift with a=0 or a mean reverting 
process with a>0 and b=0 from which V will tend to revert to a long-
run level –a/b with a mean reversion rate –b. The time required for the 
expected deviation to be halved, the half-life is given by –ln2/b.

Hull and White [9] set up a power series expansion procedure 
based on the security price distribution conditional on the average 
value of the stochastic variance. This technique remains one of the 
most tractable one since if one compare it to the analytical approach 
proposed by Heston [11] based on Fourier inversion method. As in 
Corrado and Su [13], we set in the series expansion, the variance being 
equal to its long run reversion value since it is a credible hypothesis; 
however, running the model as it appears in the Hull and White [9] 
article is not more difficult, it simply requires an additional parameter 
to be estimated. Under this expansion, they showed how to correct 
the bias in the [1] model using a precise approximation from a second 
order Taylor series expansion:
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We obtain a stochastic-adjusted call price when adding the bias 
correction to the Black and Scholes [1] call price, which yields:

CHW=CBS(V)+Q1ρξ+ Q2ρξ2+ Q3ρ2ξ2

If we assume a constant process variance, i.e, ξ = 0, we collapse in 
the Black and Scholes [1] formula since the pricing bias is null. 

Jump diffusion model

The research of a distribution that fit the best the behavior of 
stock returns still continue to be a dominant issue in finance. After the 
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introduction of arithmetic and geometric Brownian motions, much 
attention was devoted to Poisson distributions as a valid specification 
of stock returns. In addition to empirical evidence, these models 
succeeded in capturing the “abnormal” components of the total change 
in stock price as recalled Ball and Torous [15], while the “normal” 
component, considered as marginal changes, is captured by a standard 
log-normal diffusion process. 

We know that large values of returns occur too often to be consistent 
with normality and also, positive and negative returns of a given size 
are not equally likely. We observe kurtosis if jumps in either direction 
are equally likely and we observe in addition skewness, if jumps in one 
direction are larger or more frequent. Both skewness and kurtosis are 
captured by the Poisson distribution as noticed Jorion [31]. However, 
as recalled Renault [28], the expansion of these models are limited to 
the fact that there are few cases where closed-form solutions are given, 
specifically when there is a non zero probability of early exercise, or 
when the distribution of jumps is neither lognormal nor discrete. We 
follow Maltz [17] for pricing options with Jump Diffusion Model. In 
this section we assume that   follows a log-normal jump diffusion, i.e., 
the addition of a geometric Brownian motion and a Poisson jump 
process. This price process under the risk-neutral probability can be 
shown to be:

( )  ( )  S
dS r E k dt dZ kdq
S τλ σ= − + +

with qτ a Poisson counter with average rate of jump occurrence 
λ (prob(dq = 1) = λdt) and k the jump size. [15-17] suppose as a 
simplification that during the life of the option there will occur 
at most one jump of constant size. If no events occur in the option 
life, the associated probability is (1–λτ) and will be λτ if one event 
occurs during this time interval. When such event occurs, there is an 
instantaneous jump in the stock price. This simplified version is called 
by Ball and Torous [15,16] as the Bernoulli distribution version of the 
jump-diffusion model:
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This formula corresponds to the Black and Scholes [1] call option 
value weighted by the probability of a jump and by the probability of 
no jump with the stock price divided by the expected value of a jump  
(1–λkτ). 

Data Description and Sampling Methodology

The description of the data

Option prices are extracted from SBF-BOURSE DE PARIS. The data 
set contains the PXL option quotations, the strike prices, the maturity 
and the CAC 40 quotations during October 1998. We use intra-day 
observations for all quotations. The PXL options are European style 
options that are written on the CAC 40 Index. Our study is based on 
call options. Their maturity lasts 6 month. The interest rate is taken 
from DATASTREAM. We chose the PIBOR 6 months as the risk-

free interest rate. For the dividend yield, we use ex-post dividend rate 
downloaded from DATASTREAM.

The sampling methodology

We have in total 1402 intra-daily observations that represent option 
premium and all the features linked to these options, such as, the strike 
price, the underlying index price, the maturity, the minimum number 
of purchasable options, the risk-free interest rate. The maturity chosen 
is March 1999 and the minimum number of purchasable options is 50. 
The PIBOR interest rate is a daily rate. 

To each option quote, correspond two intra-minutes CAC 40 
quotes, since the index is quoted every 30 seconds, which means that 
there is a quotation for the first 30 seconds of a minute and another 
quotation for the last 30 seconds. We retain only the quotation 
pertaining to the first 30 seconds of the minute as underlying quote. 
We delete each quotation resembling exactly to the following. 

There are 600 out-of-the-money calls and 28 in-the-money calls, 
i.e. 628 calls. There are 554 out-of-the-money puts and 220 in-the-
money puts, i.e. 774 puts. For our study, we consider the 600 out-of-
the-money calls and the 554 out-of-the-money puts due to the fact they 
are more traded; they represent 1154 observations. We transform the 
out-of-the-money puts into theoretical observed in-the-money calls. 
Using the Black and Scholes [1] formula as a function, we extract the 
volatility by equating the function with the corresponding premium. 
Using this extracted volatility and the other corresponding parameters 
of the out-of-the-money puts, we re-compute through the Black and 
Scholes [1] formula for a call, a theoretical price of a supposed in-the-
money call.

Empirical Tests
We don’t display the results showing the out-of-sample 

performance of the Black and Scholes [1] model as a benchmark. We 
first estimate daily implied standard deviation (ISD) of call options 
written on the CAC 40 index from intra-day data sample. We calculate 
a prior-day ISD and we use it as an input to compute the current-day 
option price. Theoretical Black and Scholes [1] prices based on an out-
of-sample ISD are then compared to their corresponding observed 
prices. The next models follow the same procedure. 

First estimation procedure

We compute the Skewness and Kurtosis-adjusted Black and 
Scholes [1] option price model. We estimate the ISD, the option 
implicit skewness SK and the option implicit kurtosis KU, through the 
Simultaneous Equations Procedure, which gives us implied values of 
our parameters by minimizing the following sum of squares: 

2
  j C  j, , 1

min [ ( , , )]
N

OBS GISD SK KU j
C C ISD SK KU

=

−∑
CGC(ISD,SK,KU) is the call price of the proposed model computed 

with the ISD parameter and which includes the implied third and four 
moments SK, KU. This call price is calculated for any option in a given 
current day’s sample.

Column 7 gives the details about the results obtained by the 
comparison between the skewness and kurtosis-adjusted [1] model and 
the corresponding observed prices in the market. The average deviation 
spread in is computed as follows:

, , 100OBS ISD SK KU

OBS

C C
C
−

×
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Table 1 gives the results obtained from the first estimation 
procedure.

We notice that the average implied volatility is about 42.86% 
with a spike observed the second day reaching 49.41%. The average 
percentage obtained for the option implied skewness is -1.22. The 
average implied kurtosis is 3.05. We see in column six that in average, 
71.2% of the theoretical prices are outside the ± 1% spread applied in 
the observed prices. Using the Black and Scholes [1] model, we obtain 
for the calls an average of 97.1%, which signifies a gain of about 26 %. 
The average deviation is around 16.22 FF (column 8) for an average 
call price of 451.16 FF (column 9). The average spread between the 
observed price and the corresponding theoretical price is about 7.68%, 
which indicates that the mispricing generally observed in the different 
models is significantly reduced with this model. Figure 1 shows the 
effects of allowing non-normal skewness and kurtosis in the theoretical 
ISD Black and Scholes [1] formula on October, 2nd 1998. We recall that 
positive moneyness signifies out-of-the-money options and negative 
moneyness implies in-the-money options. We see that this model 
reduces sharply the price deviation or bias effect observed in figure 
1. This constitutes a clear improvement in terms of precision in the 
option valuation.  

Second estimation procedure

We compute the implicit stock price in addition to the implied 

volatility from the Black and Scholes [1] model. We estimate the ISD, 
the option implied volatility and IS, the implicit underlying asset price, 
through the Simultaneous Equations Procedure, which gives us implied 
values of our parameters by minimizing the following sum of squares:  

2
  j   j, 1

min [ ( , )]
N

OBS MISD IS j
C C ISD IS

=

−∑
CM(ISD,IS) is the call price of the second model computed with 

the ISD parameter and IS, the implied stock price. This call price is 
calculated for any option in a given current day’s sample (Table 2).

We notice that the average implied volatility is about 33.03% 
with a spike observed the second day reaching 38.16%. The average 
percentage obtained for the option implied stock price is 3339.77. We 
see in column five that in average, 93.1% of the theoretical prices are 
outside the ± 1% spread applied in the observed prices. Three of them 
are completely outside, which indicates a very slight improvement, 
but that is not significant relative to our benchmark, i.e., the Black and 
Scholes [1] model. The average deviation is around 43.09 FF in column 
7 for a average call price of 451.16 FF. The average spread between 
the observed price and the corresponding theoretical price is about 
-18.56%, which indicates that the mispricing generally observed in the 
benchmark is reduced by two. Figure 2 shows the effects of estimating 
implicitly the stock price in the theoretical Black and Scholes [1] 

Trading date Number
of data ISD (%) Option Implied 

Skewness ISK
Option Implied 
Kurtosis IKU

Proportion of Theoretical 
Prices Different from the 

Observed Prices at ± 1 %

Average Spread between
Observed and 

Theoretical Price (%)

Average Deviation of 
Theoretical Price from 
Observed Prices (FF)

Average Call 
Price (FF)

02/10/98 153 49.416 -1.083 3.151 0.810 28.702 20.378 419.250
05/10/98 69 47.436 -1.062 2.831 0.696 1.909 17.839 528.873
06/10/98 53 45.694 -1.025 2.815 0.698 2.564 16.868 506.300
07/10/98 49 45.580 -1.195 3.712 0.673 19.961 20.444 406.673
08/10/98 56 46.754 -1.027 2.821 0.804 31.224 19.376 441.110
09/10/98 41 48.173 -1.447 4.203 0.659 -7.466 19.913 338.436
12/10/98 68 43.203 -1.196 2.883 0.985 -3.986 23.798 500.436
13/10/98 55 42.325 -1.253 2.894 0.400 1.082 18.696 626.313
14/10/98 86 42.859 -1.366 3.789 0.651 0.435 12.718 345.208
15/10/98 59 40.170 -1.195 2.907 0.864 11.065 16.228 378.210
16/10/98 60 39.765 -1.371 2.903 0.700 -5.325 14.172 385.422
19/10/98 32 39.941 -1.366 2.852 0.719 3.327 9.551 395.641
20/10/98 88 39.165 -1.289 2.916 0.580 7.274 11.190 526.652
21/10/98 57 40.007 -1.299 2.885 0.667 6.378 11.160 564.885
22/10/98 47 39.291 -1.330 2.893 0.532 -1.952 10.054 566.498
23/10/98 31 40.482 -1.269 2.827 0.903 24.462 15.179 391.574
26/10/98 25 38.303 -1.148 2.817 0.760 11.033 18.150 341.497
Average 64.111 42.857 -1.222 3.054 0.712 7.688 16.219 451.166

All the observed prices correspond to call options traded in October 1998 in the MONEP. 

Table 1: Comparison of non normal skewness and kurtosis model prices and observed prices of PXL call options.
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Figure 1: Adjusted skewness and kurtosis model - October, 2nd 1998.
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formula on October, 2nd 1998. We globally see that options around 
the money are generally all over-estimated. The estimation failed to 
provide an improvement in terms of price deviation. 16 out of 18 daily 
implicit stock prices are superior to the observed stock prices and the 
average difference between them is about 2.27% with a median value 
at 2.54% and about 2.50% when compared to the average of observed 
values in the day.

Third estimation procedure

In this procedure, we compute an option price as a mixture of two 
log-normal distributions. We estimate two implied volatilities and 
m1, m2, α1, α2 through the Simultaneous Equations Procedure, which 
gives us implied values of the parameters. The Simultaneous Equations 
Procedure minimizes the following sum of squares:

2
  j 2  j 1 2 1 2 1 2, , 1

min [ ( , , , , , )]
N

OBS LNISD m j
C C ISD ISD m m

α
α α

=

−∑  

C2LN(ISD1, ISD2, m1, m2, α1, α2) is the call price of the proposed 
model computed for any option in a given current day’s sample (Table 3).

We notice that the average implied volatility is about 50.50% for 
ISD1 and three times less for ISD2 with 16%. We see in column seven 
that in average, 91.7% of the theoretical prices are outside the ±1% 
spread applied to the observed prices. Four of them are completely 
outside, which indicates a slight improvement, but that is not significant 
relative to our benchmark. 

The average deviation is around 37.81 FF in column 9 for an average 
call price of 451.16 FF. The average spread between the observed prices 
and the corresponding theoretical prices is about -8.66%, this is an 
improvement in pricing compared to the benchmark (Figure 3) shows 
the effects of considering a mixture of two log-normal distributions on 
October, 2nd 1998.

 This form of estimation failed to provide an improvement in 
terms of price deviation and we observe that the prices generated by 
this mixture are globally the same than those generated by the implicit 
stock price model.

Fourth estimation procedure

We estimate implicitly the parameters of the Hull and White 
[9] model. We estimate the correlation parameter ρ, the volatility of 
volatility parameter ξ and the coefficient of mean reversion b and the 
ISD through the Simultaneous Equations Procedure, which gives us 
implied values of our parameters by minimizing the following sum of 
squares: 

2
  j W  j, , , 1

min [ ( , , , )]
N

OBS HISD b j
C C ISD b

ρ ξ
ρ ξ

=

−∑
CHW(ρ, ξ, b) is the call price of the Hull and White [9] model. This 

call price is calculated for any option in a given current day’s sample 
(Table 4).

Trading date Number
of data ISD (%) Option Implied 

Stock Price IS

Proportion of Theoretical 
Prices Different from the 

Observed Prices at ± 1 %

Average Spread between
Observed and Theoretical 

Price (%)

Average Deviation of 
Theoretical Price from 
Observed Prices (FF)

Average Call Price (FF)

02/10/98 153 38.158 3036.741 1.000 -60.031 76.532 419.250
05/10/98 69 37.506 3097.794 0.942 -19.283 45.895 528.873
06/10/98 53 37.433 3150.394 0.830 -16.927 50.194 506.300
07/10/98 49 34.885 3203.877 0.959 -44.953 33.987 406.673
08/10/98 56 37.989 3045.192 1.000 -68.087 79.396 441.110
09/10/98 41 30.986 3213.468 0.976 -11.808 54.859 338.436
12/10/98 68 32.368 3316.699 1.000 14.847 72.750 500.436
13/10/98 55 33.166 3339.479 0.836 -1.775 39.135 626.313
14/10/98 86 28.806 3422.876 0.919 -8.973 32.703 345.208
15/10/98 59 30.550 3457.335 0.847 -6.200 33.062 378.210
16/10/98 60 29.257 3496.891 0.900 -2.293 24.723 385.422
19/10/98 32 29.516 3492.022 0.938 -9.126 22.979 395.641
20/10/98 88 32.620 3477.614 0.898 -3.893 32.953 526.652
21/10/98 57 32.520 3492.155 0.947 -12.402 31.770 564.885
22/10/98 47 33.129 3503.112 0.915 -8.276 36.129 566.498
23/10/98 31 28.902 3500.633 0.968 -49.638 36.298 391.574
26/10/98 25 30.023 3529.909 0.960 -6.669 29.141 341.497
Average 64.111 33.035 3339.776 0.931 -18.558 43.089 451.166

All the observed prices correspond to call options traded in October 1998 in the MONEP.

Table 2: Comparison of implicit stock price model and observed values of PXL call options.
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Figure 2: Implicit stock price -model -October, 2nd 1998.
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The average percentage obtained for the implied correlation 
parameter is –0.60. We see in column five that in average, 93.1% of the 
theoretical prices are outside the ± 1% spread applied to the observed 
prices. Two of them are completely outside, which indicates a very slight 
improvement, but that is not significant relative to our benchmark. The 
average deviation is around 23.32 FF in column 9 for a average call 
price of 451.16 FF. The average spread between the observed price and 
the corresponding theoretical price is about 17.89%, which shows that 
the mispricing generally observed in the benchmark is reduced two 
times. (Figure 4) shows the effects of estimating option prices with a 
stochastic volatility model on October, 2nd 1998. 

The Hull and White [9] model provides significant improvements 
in terms of price deviations for far from the money call options.

Fifth estimation procedure

We estimate implicitly the parameters of the jump diffusion model. 
We estimate the jump occurrence parameter λ, the jump size parameter 
k and the implied volatility through the Simultaneous Equations 
Procedure, which gives us implied values of three parameters by 
minimizing the following sum of squares:  

2
  j UMP  j, , 1

min [ ( , , )]
N

OBS Jk ISD j
C C k ISD

λ
λ

=

−∑
CJUMP(λ, k, ISD) is the call price given by the jump diffusion model. 

This call price is calculated for any option in a given current day’s 
sample (Table 5).

We notice that the average implied volatility is about 24 %. The 
average percentage obtained for the implied average rate of jump 
occurrence is 0.297 and the implied average jump size is about –0.53. 
About 74.62% of the theoretical prices are lying outside the ±1% spread 
applied to the observed prices. No one is totally outside, showing that 
the improvements that brings this jump diffusion model. 

The total gain relative to the benchmark is about 23 %. The average 
deviation is around 15.17 FF for an average call price of 451.16 FF. The 
average spread between the observed prices and the corresponding 
theoretical prices is about –5.14 %, which indicates a considerable 
decrease in the mispricing. Figure 2 shows the effects of allowing one 
jump of constant size in the theoretical [1] framework on October, 2nd 
1998 (Figure 5). 

Trading date ISD1 (%) ISD2 (%) m1 m2 α1

Proportion of Theoretical 
Prices Different from the 

Observed Prices at ± 1 %

Average Spread 
between
Observed

and
Theoretical
Price (%)

Average 
Deviation of 

Theoretical Price 
from Observed 

Prices (FF)t

02/10/98 36.503 39.046 8.047 8.042 0.848 1.000 -60.557 76.632
05/10/98 46.494 10.486 7.841 8.236 0.685 0.986 5.865 39.746
06/10/98 26.979 41.575 8.211 7.854 0.404 1.000 -18.158 41.204
07/10/98 19.579 68.446 8.187 7.595 0.606 0.918 -18.724 27.639
08/10/98 34.642 33.996 8.070 8.013 0.834 1.000 -66.727 79.382
09/10/98 41.005 11.800 7.889 8.250 0.725 0.976 10.982 40.351
12/10/98 30.449 32.399 8.079 8.024 0.827 0.971 15.293 75.205
13/10/98 23.065 45.590 8.196 7.776 0.685 0.945 3.711 33.933
14/10/98 31.404 43.655 8.113 8.045 0.862 0.930 -8.326 31.660
15/10/98 26.341 45.359 8.157 7.968 0.837 0.864 -6.018 32.795
16/10/98 17.729 55.596 8.257 7.736 0.652 0.817 5.180 15.740
19/10/98 44.034 18.006 7.947 8.260 0.441 0.875 -4.066 14.355
20/10/98 45.498 16.593 7.898 8.271 0.442 0.955 7.003 30.265
21/10/98 51.874 16.550 7.890 8.269 0.419 0.526 -1.264 15.680
22/10/98 45.592 17.366 7.916 8.275 0.424 0.872 4.011 22.267
23/10/98 47.876 19.694 7.909 8.266 0.390 1.000 -26.642 42.918
26/10/98 19.857 17.260 7.950 8.286 0.411 0.960 11.267 23.085
Average 50.495 15.995 7.961 8.256 0.425 0.917 -8.657 37.815

All the observed prices correspond to call options traded in October 1998 in the MONEP.

Table 3: Comparison of mixture of lognormal distribution model and observed values of PXL call options.
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Figure 3: Mixture of Lognormal Distribution model - October, 2nd 1998.
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Figure 4: Hull and White-model - October, 2nd 1998.

Trading date Number of
Data ISD (%)

Implied 
Volatility of 

Volaility

Implied
Correlation

Half-Life Of 
Volatility (Days)

Proportion of Theoretical 
Prices Different from the 

Observed Prices at  ± 1 %

Average Spread between
Observed and

Theoretical Price (%)

Average Deviation of 
Theoretical Price from 
Observed Prices (FF)

02/10/98 153 44.397 2.655 -0.560 21.357 0.974 35.785 30.525
05/10/98 69 43.575 2.101 -0.696 21.229 0.913 16.722 25.472
06/10/98 53 41.858 2.994 -0.520 21.443 0.943 13.139 19.630
07/10/98 49 41.391 2.241 -0.624 21.253 0.898 33.809 21.958
08/10/98 56 42.251 3.156 -0.478 21.456 1.000 52.034 28.610
09/10/98 41 41.497 1.856 -0.717 21.165 1.000 0.751 20.252
12/10/98 68 40.347 2.531 -0.629 21.333 0.897 3.734 25.566
13/10/98 55 40.843 3.549 -0.460 21.563 0.818 5.202 22.714
14/10/98 86 37.122 4.496 -0.421 21.795 0.860 6.620 15.132
15/10/98 59 35.363 2.082 -0.715 21.224 0.966 44.622 25.641
16/10/98 60 35.043 1.699 -0.655 21.127 0.983 0.208 21.515
19/10/98 32 36.232 2.337 -0.652 21.278 0.938 10.951 23.923
20/10/98 88 35.031 2.936 -0.526 21.415 0.932 12.970 22.693
21/10/98 57 36.609 2.577 -0.516 21.316 0.947 12.752 27.162
22/10/98 47 35.676 3.063 -0.495 21.437 0.872 2.533 18.458
23/10/98 31 37.675 2.873 -0.512 21.392 0.968 34.398 26.174
26/10/98 25 34.912 3.101 -0.486 21.445 0.920 17.998 20.984
Average 64.111 39.038 1.858 -0.606 21.157 0.931 17.896 23.318

All the observed prices correspond to call options traded in October 1998 in the MONEP.

Table 4: Comparison of implicit Hull and White (1988) model and observed values of PXL call options.

Trading date Number of
Data ISD

Option 
Implied Jump 
Occurrence

Option Implied
Jump Size

Proportion of Theoretical 
Prices Different from the 

Observed Prices at ± 1 %

Average Spread between
Observed and

Theoretical Price (%)

Average Deviation of 
Theoretical Price from 
Observed Prices (FF)

Average Call 
Price (FF)

02/10/98 153 0.273 0.377 -0.537 0.778 4.490 17.148 419.250
05/10/98 69 0.279 0.421 -0.537 0.768 -13.107 16.414 528.873
06/10/98 53 0.269 0.387 -0.544 0.642 -6.343 14.829 506.300
07/10/98 49 0.272 0.359 -0.542 0.857 -17.044 16.482 406.673
08/10/98 56 0.259 0.389 -0.509 0.875 6.844 17.806 441.110
09/10/98 41 0.265 0.397 -0.538 0.805 -9.838 15.616 338.436
12/10/98 68 0.237 0.517 -0.473 0.926 -6.087 19.867 500.436
13/10/98 55 0.254 0.382 -0.498 0.582 -3.704 17.429 626.313
14/10/98 86 0.254 0.341 -0.510 0.709 -5.438 10.354 345.208
15/10/98 59 0.233 0.421 -0.471 0.763 -12.297 11.351 378.210
16/10/98 60 0.225 0.415 -0.467 0.767 -3.076 10.705 385.422
19/10/98 32 0.227 0.397 -0.463 0.563 -1.906 7.855 395.641
20/10/98 88 0.211 0.477 -0.440 0.693 -1.053 19.192 526.652
21/10/98 57 0.237 0.335 -0.492 0.596 -1.349 17.138 564.885
22/10/98 47 0.254 0.270 -0.536 0.574 -5.698 15.451 566.498
23/10/98 31 0.249 0.268 -0.533 0.871 -5.348 14.571 391.574
26/10/98 25 0.214 0.516 -0.427 0.920 -6.417 15.680 341.497
Average 64.111 0.239 0.297 -0.529 0.746 -5.139 15.170 451.166

All the observed prices correspond to call options traded in October 1998 in the MONEP.

Table 5: Comparison of jump diffusion model prices and observed prices of PXL call options.
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The reduction in the price deviation is clear comparing to the 
benchmark and is very comparable to model 2 and model 5.

The Statistical Performance of the Models
We want to evaluate the statistical significance of the improvement 

in terms of performance from out-of-sample adjustments brought by 
each model and for that, we use the following Z-statistic that represents 
the difference between the two proportions,  P1 and P2  Hoel (1984):

1 2

1 1 1 2 2 2(1 ) / (1 ) /
P PZ

P P N P P N
−

=
− + −

P1 and P2 are sample proportions, while N1 and N2 are corresponding 
sample sizes.

We obtain after computation:

For the first model: Z=18.218 - P1=0.971 and P2=0.712; N1=N2= 1154

For the second and fourth model: Z=4.470 - P1=0.971 and P2=0.93; 
N1=N2=1154

For the third model: Z=5.680 - P1=0.971 and P2=0.917; N1=N2=1154

For the fifth model: Z=16.383 - P1=0.971 and P2=0.746; N1=N2=1154

The Z-statistics of 4.470, 5.680 and 18.218 are statistically significant 
at more than 99.99% confident level, which corresponds to a fractile of 2.32. 

We want to go further into the analysis of the out-of-sample 
performance of our various models. We denote C, the observed price 

of the option and Ĉ , the theoretical price of the same option. We use 
the Mean of Absolute forecast Error (MAE) and the Mean Absolute 
Percentage forecast Error (MAPE) (Lauterbach and Schultz (1990)). 
For n being the number of options, the value of the MAE is equal to the 
mean of the difference in absolute value between the observed prices 
and the theoretical prices:

1

ˆ
n

i i
i

MAE C C n
=

= −∑
For each option the valuation error percentage is given by: 

ˆ
ˆ

i i

i

C C
C
−

The MAPE value is:

1

ˆ
ˆ

n
i i

i i

C CMAPE n
C=

−
=∑

The value of MAE and MAPE are actually complementary because 
if the first one gives a classical estimation of the difference, the second 
one gives the difference relative to the theoretical price. Tables 6 and 
7 give the results obtained using the PE, MAE and MAPE measures 
(Table 6).

The jump diffusion model holds the best MAPE and MAE and 
the second best pricing errors while the stochastic volatility model has 
surprinsingly the worst MAPE and pricing errors. (Table 7) presents 
the forecast errors distinguishing in-the-money options and out-the-
money options.
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Figure 5: Jump diffusion model - October, 2nd 1998.

Models MAE MAPE PE
Benchmark 38.827 0.209 1.206

I - Series expansions 11.248 0.413 -1.668
II - Martingale restriction 40.760 0.171 -1.312

III - Mixture of log-normals 36.818 0.146 0.030
IV - Stochastic volatility 18.589 0.628 10.497

V - Jump diffusion 10.007 0.0632 -0.899

The pricing errors are computed as the difference between the observed call price and the theoretical price. 

Table 6: Comparison between alternative models.

Models
 

MAE MAPE PE
ITM OTM ITM OTM ITM OTM

Benchmark 41.673 36.271 0.061 0.342 42.806 -36.349
I - Series expansions 9.785 12.563 0.014 0.772 -0.514 -4.783

II – Martingale restriction 60.235 23.262 0.0869 0.247 28.734 -12.489
III – Mixture of log-normals 55.285 20.225 0.074 0.211 20.146 -1.045

IV – Stochastic volatility 22.418 15.149 0.03 1.166 21.717 0.336
V - Jump diffusion 12.24 8 0.0165 0.105 -0.907 -4.389

Table 7: Comparison between alternative models for ITM and OTM call options.
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We observe that the series in expansion model produces the best 
forecasts concerning ITM options for PE, MAE and MAPE measures. 
However, the best MAE and MAPE measures concerning OTM options, 
are obtained by the jump diffusion model, which has also the second 
best pricing error measure. The martingale restriction model has the 
worst performance among the five other models. The two models (1 
and 5) that overestimate the ITM options have the best PE; the only 
model (4) that underestimates the OTM options has also the best PE. 
We globally note that the stochastic volatility model and the series in 
expansions model suffer form severe mispricing of OTM options. 

Conclusion
In this paper, we carry out empirical tests of different models likely 

to correct the pricing bias that occurred in the classical Black and 
Scholes [1] framework and we also test the statistical performance of 
the given models. We observed that the Black and Scholes [1] model 
undervalues out-the-money calls and overvalues in-the-money calls. 
The jump diffusion model performs better than the other four models 
and overall has the best results concerning the out-the-money call 
options while the series in expansion model holds the best forecasts 
concerning the in-the-money call options. The stochastic volatility 
model arrives in third position with no outstanding performances. As 
for the mixing two log-normal distibutions and the implicit stock price 
model, they didn’t offer the expected precision. In further research, 
we will extend this work to propose an option valuation model that 
incorporates both transaction costs and information costs in order to 
correct the bias due to the frictions in the market.
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