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Abstract

Malignant cells produce specific tumor antigen receptors (TAAs), which can be engineered to be recognized by a
patient’s own T-cells through the expression of chimeric antigen receptors (CARs). These CAR-T cells represent the
latest product of adoptive cellular immunotherapy (ACI). In particular, the engineering of CAR-T cells has been most
successful to date in the targeting of CD-19 B-cell associated hematologic malignancies. This review focuses on a
general review of the engineering process of CAR-T, difference between the various generations, treatment options,
and associated toxicities. To date, most of the literature regarding CAR-T cells is directed towards CD19 to treat B-
cell malignancies, including chronic lymphocytic leukemia (CLL), B-cell acute lymphoblastic leukemia (ALL), and
non-Hodgkin lymphomas.

Keywords: Chimeric antigen receptor T-cells; Tumor antigen
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Introduction
Oncologic pharmacotherapy throughout the decades has

experienced a paradigm shift of sorts, which initially encompassed
chemical blockers, and then moved toward biologic agents. However
now, the future is promising great strides in the development of
immunotherapies, and most recently, chimeric antigen receptor T-cells
(CAR-T cells) which provide the next step toward personalized
medicine.

Malignant cells produce specific tumor antigen receptors (TAAs),
which can be engineered to be recognized by a patient’s own T-cells
through the expression of chimeric antigen receptors (CARs). These
CAR-T cells represent the latest product of adoptive cellular
immunotherapy (ACI). In particular, the engineering of CAR-T cells
has been most successful to date in the targeting of CD-19 B-cell
associated hematologic malignancies. This review focuses on a general
review of the engineering process of CAR-T, various generations, the
role in therapy of chronic lymphocytic leukemia (CLL), B-cell acute
lymphoblastic leukemia (ALL), and non-Hodgkin lymphomas, as well
as associated toxicities.

T-Cell Engineering
Previous ACI has centered on the identification of major

histocompatibility complex (MHC) for tumor eradication [1]. CAR-T
cells however, are chimeric as the name implies due to a synthesis of an
antibody-antigen recognition constituent, along with the intracellular
signaling portion of a TCR [2]. Due to CAR-T MHC independence,
the lack of issues associated with variable efficacy due to mechanisms
such as HLA expression, antigen binding affinity and induction of cell-
mediated immune response makes it appealing in terms of its
utilization [3].

CAR-T cell engineering begins when T-cells are cultured using an
autologous blood sample. T-cells are then grown in a lab for 10-14 days
during which transduction (through various methods discussed
below), and expansion, occur. The cells are frozen, and finally re-
administered to the patient. Currently this is a “blood bank” model as
opposed to a central distribution model, which is not available due to
the very individualized process as it currently stands. These re-
administered CAR-T cells may target a variety of surface molecules,
and additionally T cell subsets and progenitors, as well as natural killer
cells, which can allow for recruitment of these cells toward an antigen
in question [1]. This model proves very useful due to the avoidance of
self-antigen tolerance. The question exists as to when it is appropriate
to condition a patient to receiving this autologous transfer, which
refers to whether or not the patient should first receive traditional
chemotherapy and then the CAR-T cells, vice versa, or only the CAR-T
cells.

Transduction of the CAR-T cells can occur through various
approaches including those of both viral and non-viral methods.
Currently, available transduction techniques include retroviral,
lentiviral, and adeno-associated viral vectors, and non-viral methods
including DNA-plasmid, transposon, and RNA-based gene practices.
An in-depth evaluation of the engineering regarding each method is
beyond the scope of this review; however, each will be discussed
briefly.

Gamma retroviral vectors assign a transgene in the place of a
retroviral coding sequence of the viral genome, which by using the
viral replication ability, allows for successful cell transfection with
minimal likelihood of perpetuation of retroviral infection in a patient
due to lack of a packaging signal [2,4]. Similarly, lentiviral vectors
utilize the replacement of a viral genome (most commonly an HIV-1
modification) with a transgene; however, lentiviral vectors have the
more attractive ability to infiltrate and integrate into antigenic cells
without the necessity of cell division. Additionally, due to the lack of
integration into promoter regions, the likelihood of mutagenesis is
decreased [2,5,6]. These vectors require several distinct components to
allow for the nuclear export of gag-pol mRNA and import of the pre-
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integration viral complex [2,7,8]. These components include the trans-
presentation of the rev gene and the central polypurine tract/central
termination signal [2,7,8]. Adeno-associated viruses (AAV) are
another attractive method for gene therapy due to being a single-
stranded DNA parvovirus which is non-enveloped and devoid of
replication potential, while still being capable of infiltrating non-
dividing cells. Therefore unlike retroviruses which can potentially
cause random insertion and possibly mutagenesis, AAV may be a more
benign method. AAV also require the presence of another virus such as
herpes simplex virus (HSV) to combine transgene capacity with
genomic integration for a specific site of a host. However, rep protein
interaction with the inverted terminal repeat (ITR) can allow for
latency of the AAV when HSV is not present [2].

A comparatively less efficient engineering option exists with
plasmid DNA-based vectors, which allows for transfection of plasmid
DNA into T-cells. These T-cells unfortunately tend to endure a shorter
life-span when carrying the plasmid. Due to the low frequency of
genomic integration with plasmid DNA-based vectors, as well as a
higher likelihood of insertional mutagenesis, this process is not as
favored when compared to other engineering options [2]. Similarly,
another non-viral transduction option exists with transposon-based
gene transfer. This method allows for the transfer of genes between
various chromosomes. Currently, the two varieties of transponson-
based gene transfer include Sleeping Beauty (SB), and PiggyBac (PB).
The latter may show more potential in humans due to the capacity to
deliver larger transgenes. Conversely, the former may allow for more
stability in regard to chromosomal integration [2,9].

An interesting substitute for viral and DNA-based non-viral gene
methods is in vitro-transcribed messenger RNA (mRNA)-mediated
gene expression. The attraction of this method is due to the ease of the
engineering process, effective transduction in vivo, and low likelihood
of in vivo mutagenesis [2,10,11]. However, this process’ appeal may be
offset by the 7-10 day time span of administration to titrate to
antitumor effect. Yet some may argue that this extended interval of
administration may prove to be safer for the patient [2].

Ultimate efficacy of CAR-T cells depends on their ability to identify
and bind to the malignant antigen, activate the T-cell, defeat the
immunosuppressive microenvironment of the tumor to avoid
inactivation, proliferate and mount a response, and ultimately lead to
the formation of memory cells in order to prevent future malignancies
[12]. However, understanding the core design of CAR-T cells helps
appreciate their varying potential for success in vivo.

A standard CAR-T cell structure comprises an extracellular antigen
recognition domain made of single-chain variable fragment (scFv)
from heavy- and light-chain variable regions of a TAA-specific
monoclonal antibody [13]. The scFv domain’s role is to target specific
surface markers of the individualized tumor cells, without the necessity
of MHC presentation or patient halotype. There are additional ligand
proteins including those for vascular endothelial growth factor
receptor (VEGF), as well as natural killer cell receptor G2D (NKG2D)
receptors, which may be utilized in place of scFv [14,15]. Regardless,
this extracellular antigen recognition domain is connected to a
transmembrane, as well as intracellular signaling domains within the
T-cell receptor [13]. Depending on the design there may or may not be
spacer regions, which when present have the duty of safeguarding the
position of the TAA-CAR connection, and can cause variance among
the signal strength of complex [2]. Additionally, the transmembrane
domain provides critical functionality in CAR response to the TAA in
the role T-cell signaling. The transmembrane domain results from

proteins such as CD3, CD4, CD8, and CD28 [2,14]. Some CAR-T
designs incorporate co-stimulatory signal domains as seen in 2nd and
3rd generations, giving the advantage by allowing for further
production of cytokines and prolonged survival of these chimeric T-
cells. Advancements in the engineering of CAR-T cells have allowed
for the development of four generations to date [2]. Due to differences
in design including antigen selection, strength of the attraction,
differences in hinge region size, as well as type of signaling domains,
there is much variability in terms of potential success [12].

While efficacy remains a highly important function of CAR-T cells,
safety is an aspect that must also be addressed. Unique adverse effects
will be addressed later in this review; however, in terms of engineering
there are approaches that are being investigated to decrease the
possibility of toxicities. One such toxicity includes cytokine release
syndrome (CRS). This occurs when the proliferating CAR-T cells
continue to release cytokines uncontrollably due to lack of an apoptotic
control mechanism. Currently, CRS can be treated in patients using
corticosteroids or anti-IL-6 receptor antibodies [16,17]. Additionally,
concern exists for long lasting B-cell depletion due to this perpetual
proliferation. The ideas of apoptosis mediated via suicide genes, as well
as a lessened proliferation of the CAR-T cells through transient mRNA
CAR have been studied [18,19]. However, there is current development
as seen in the study by Ma, in the engineering of “switch molecules”,
which allow for modulation of the CAR-T cell response. This design
could allow for control of the CAR-T cell response through titratable
doses, or even terminate the response through removal of the switch in
order to reduce aforementioned toxicities in vivo [20]. An advantage of
switch molecules over apoptotic suicide genes is the allowance for
controlled therapy, versus the immediate premature death of the CAR-
T cells, resulting in the termination of treatment [21]. Switch
molecules may also prove useful in targeting heterogeneous tumors
expressing two or more antigens such as CD19, and CD22, in addition
to tumor escape variants [20].

CAR T-Cell Generations
The 1st generation CAR-T cells provided the foundational

engineering in the construct of future generations through their design
of scFv antigen-binding epitope signaling an intracellular moiety
without the production of much IL-2. Unfortunately, the proliferative
ability of these models in vivo was bleak, and it was determined that
there was a need for co-stimulation to successfully activate T-cells,
which led to the birth of later CAR-T cell generations [2,22].

The 2nd generation models became more complex in design with
two intracellular signaling domains, as opposed to just one in the 1st

generation model. These intracellular domains consist of an
endodomain from co-stimulatory models, namely CD28 among
others, as well as an intracellular region of CD3ζ [2]. The fusion of
these domains together allows for abundant propagation of the CAR-T
cells without the need for HLA mediated stimulation. Additionally, the
CD28 domain may play a protective role for the T-cell itself by
preventing antigen mediated death of the activated T-cells which in
turn leads to longer proliferation, and therefore a potent antitumor
effect [2].

The 3rd generation models have been developed with two co-
stimulatory signals, potentially providing additional superior signaling
as compared to the 2nd generation models. The signaling domains of
these 3rd generation models are composed of CD28, CD3ζ, and OX40
or 4-1BB. This superior signaling is believed to be especially true of 3rd
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generation models with coupling of the co-stimulatory site to CD3ζ, by
leading to more successful proliferation.

It is the 4th generation models, also known as T-Cells Redirected for
Universal Cytokine Killing (TRUCK), that are showing the most
promise in the evolution of the CAR-T cell constructs. These TRUCKs
are integral in endogenous recruitment of cytokines, namely IL-12
which then further cascade recruitment of additional cells to target the
antigenic tumor cells. Depending on the engineering design of the
TRUCK, cytokines can either be secreted through the control of a
constantly active promoter, or upon the binding of the antigen and
CAR [2,23,24].

Role in Therapy
When developing a new molecular entity for the treatment of

cancer, it is ideal to target a tumor by finding an antigen specifically
expressed on the tumor cells but not on normal cells [25]. This can
result from altered expression, translocation producing a fusion
protein, or mutation leading to altered configuration or antibody
binding. CD19 is an attractive target since it is a B-cell surface protein
expressed throughout B-cell development. Therefore, antibodies
against CD19 inhibit tumor cell growth while leaving healthy cells
largely untouched. To date, most of the literature regarding CAR-T
cells is directed towards CD19 to treat B-cell malignancies, including
CLL, B-cell ALL, and non-Hodgkin lymphomas [25].

In a Phase I/IIA study, a total of 30 patients were given CTL019 T-
cell therapy to assess the safety and feasibility [26]. Both pediatric and
adult patients were included in the study with 25 patients between the
ages of 5-22 and 5 patients between the ages of 26-60. All patients had
relapsed or refractory CD19+ cancers with 26 patients having B-cell
ALL in the first to fourth relapse, 3 with primary refractory B-cell
disease, and 1 patient with T-cell ALL. Eighteen patients had relapsed
after allogenic stem cell transplant and 3 patients were refractory to
blinatumomab. CTL019 lentiviral vector was traduced with autologous
T-cells and administered to the patients at doses of 0.76 × 106 to 20.6 ×
106 CTL019 cells per kilogram of body weight. After 1 month, 27 of 30
patients (90%) had morphologic complete remission with 2 of the 3
patients previously refractory to blinatumomab having a complete
remission. By means of multiparametric flow cytometry, minimal
residual disease (MRD) was negative in 22 patients and positive in 3
patients with level of 0.1%. All 25 patients were negative for MRD at 3
months (0.09% and 0.22%, respectively). Two patients did not receive
flow cytometry to determine MRD. Of the 27 patients with complete
remission, 19 remained in remission with 15 patients not receiving
further treatment and 4 withdrawing from the study to receive another
medication. Median follow-up time was 7 months (range 1-24
months). Event-free survival rate at 6 months was 67% (95% CI, 51-88)
and overall survival was 78% (95% CI, 65-96). CTL019 cells were
detectable in the blood by means of flow cytometry for up to 11
months after administration of treatment suggesting continued effector
function.

In a Phase I trial, 16 adult patients with B-ALL either in first
complete remission or relapsed or refractory disease were treated with
19-28z CAR T cell [27]. The median age of enrollment was 50 years.
Patients underwent leukaphersis followed by cyclophosphamide
conditioning chemotherapy then infusion of 19-28z CAR T cell dosed
at 3 × 106 CAR T cells/kg. Overall complete response rate was 88%
with MRD negative or complete molecular response of 75% by flow
cytometry. The peak CAR-T cells in the bone marrow were found to be

at 1-2 weeks after infusion and decreased to low or undetectable by 2-3
months.

Anti-CD19 CAR-T cells were administered in 9 patients with diffuse
large B-cell lymphoma (DLBCL), 2 patients with indolent lymphoma,
and 4 patients with CLL [28]. All patients received chemotherapy with
cyclophosphamide and fludarabine followed by anti-CD19 CAR-T
cells dosed at 1 × 106 to 5 × 106 CAR-positive T cells/kg. Thirteen total
patients (7 patients with DLBCL and 6 patients with indolent B-cell
malignancies) were evaluated due to one patient being lost to follow-
up and one patient dying 16 days after receiving treatment. Out of the
7 patients with DLBCL, 4 patients obtained a CR, 2 patients obtained a
PR, and 1 patient obtained a SD. All 6 patients with indolent B-cell
malignancies received a PR or CR and 3 of the 4 patients with CLL are
in ongoing CR confirmed by multicolor flow cytometry of the bone
marrow. The longest duration of CR in this trial is 23 months to date.
The number of CAR-positive blood cells peaked between 7 and 17 days
after treatment and rapidly decreased afterwards measured by qPCR.

Unique Adverse Effects

Cytokine release syndrome (CRS)
CRS after administration of CAR-T cell can range in severity from

mild to severe and life-threatening [26]. CRS is defined as a systemic
inflammation response that is produced by elevated levels of cytokines
and these elevations are associated with T-cell activation and
proliferation. Mild severity symptoms can be classified as high
temperatures and mylagias [26]. Whereas, severe CRS produces
vascular leakage, hypotension, respiratory and renal insufficiency,
cytopenias, neurological changes and coagulopathy [26,27]. Davila, et
al. created criteria for diagnosis of non-severe CRS versus severe CRS
based on three factors: presence of fevers (38°C) for 3 or more days,
elevation of characteristic cytokines, and presence of clinical toxicities
[27]. Fevers usually start approximately 24 hours after administration
and can last several days. The elevation of seven cytokines was
identified with correlation to pretreatment tumor burden. In Davila, et
al. trial, patients that required intensive interventions for CRS
treatment had a 75-fold increase over pretreatment baseline levels in 2
of the 7 identified cytokines. Patients with non-severe CRS tolerated
treatment and only required routine observation and monitoring. The
average hospital stay for non-severe CRS patients was 15.1 days (SD,
18.8, range 4-61 days). Severe CRS patients required closer observation
and were more likely to need medical and pharmacologic
interventions. These patients length of stay in the hospital was on
average 56.7 days (SD, 28.6, range 20-104).

Although the toxicities associated with CRS are concerning, to date
all cases have been fully reversible [27]. It is essential to recognize the
signs and symptoms of CRS; however, premature intervention that is
not necessary may diminish the T-cell persistence or efficacy. The
treatment for severe CRS includes tocilizumab, an IL-6 receptor
blocking antibody, vasoactive pressors, mechanical ventilation,
antiepileptics, and antipyretics [26,27].

In the Maude, et al. trial, all of the 30 patients experienced CRS with
22 patients (73%) experiencing mild to moderate severity needing
hospitalization and 8 patients (27%) with severe issues requiring
intensive care with respiratory support and vasopressor support for
hypotension [26]. All patients had increased C-reactive protein and
ferritin levels. Patients with severe symptoms had higher peak levels of
interleukin-6, C-reactive protein, ferritin, interferon-γ, and soluble
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interleukin-2 receptor. Severe CRS occurred one day after treatment;
whereas, moderate CRS occurred 4 days after treatment. Tociliziumab
was used in 9 patients which resulted in rapid defervescence and blood
pressure stabilization over 1 to 3 days. Six of these patients required a
short course of glucocorticoids and 4 patients had to receive a second
dose of tocilizumab. Two of the 9 patients, has relapses of CRS. All 30
patients did recover with complete reversal of symptoms and all
laboratory values returned to normal.

Neurotoxcity
Neurotoxicity associated with CAR-T cell treatment can range from

aphasia, tremor, myoclonus, gait abnormalities, apraxia, obtundation,
encephalopathy or confusion [26,28]. Encephalopathy usually occurs
in a small number of patients and usually after development of CRS
[26]. The exact cause of neurotoxicity is unclear but it may be due to
CAR recognition of CNS antigens or may be due to unusual cytokines
or cytokine concentrations in CSF. The symptoms are usually self-
limiting and last around 2 to 3 days, with resolution over an additional
2 to 3 days. Full symptom recovery can be expected without further
invention or long-term consequences.

In the Maude, et al. trial, 13 patients (43%) experienced
neurotoxicity issues ranging from delirium during high temperatures
to global encephalopathy with at least one of the following: aphasia,
confusion, delirium, and hallucinations [26]. One of the patients with
encephalopathy experienced two seizures; however, it is unclear if that
was related to electrolyte abnormalities. In 6 patients, delayed
encephalopathy occurred after resolution of high temperatures. This
encephalopathy was independent from the severity of CRS and
whether the patient received tocilizumab.

Conclusion
There are numerous advantages of using CAR-T cells in the

treatment of cancer disease states. As seen in the trial results is an
impressive response potential with utilizing CAR-T cells. Due to CAR-
T cell MHC independence, it can be used regardless of HLA
expression. The cells can be derived from peripheral blood to ease
access. The target of the CAR-T cell is known and the tumor
expression of target can be confirmed. The CAR-T cells may bypass
some inhibitory mechanisms that other treatment agents may
encounter. A few of the disadvantages include high potential for on
target, off tumor autoimmune toxicity and a possible higher probability
for CRS.
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