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Emerging Tools for Computer-aided Diagnosis and 
Prognostication

The ability to more accurately predict and prevent disease has 
the potential to transform clinical practice by improving response to 
specific treatment regimens and decreasing morbidity and mortality. 
Part of what limits the accuracy to which we can predict and prevent 
disease results from our limited understanding of the relationship 
between clinical presentation and disease progression [1].

Although vast amounts of data are collected at clinical presentation, 
ranging from macro-scale Magnetic Resonance Imaging (MRI) scans, 
to micro-scale pathology slides, to nano-scale proteins and genes, there 
are challenges associated with analyzing, combining, and correlating 
these data to make diagnostic, prognostic, and theranostic predictions 
[2-4]. Computerized image analysis and data integration methods have 
the potential to improve our understanding of the relationship between 
these heterogeneous multi-format, multi-scale data to better predict 
disease outcomes and treatment responses.

Computer-based Image Analysis
Advances in imaging hardware and computational processing have 

catalyzed the growth of digital imaging and computer-based image 
analysis in pathology. Digitization of entire glass slides (whole-slide 
imaging) has increased the amount of morphologic data that can be 
obtained from tissue [3]. Whole-slide imaging has also aided pathologists 
with automated field selection and has begun to allow pathologists to 
supplement steps in image analysis (i.e., feature extraction, feature 
selection, dimensionality reduction, and classification) with automated 
machine-learning algorithms to minimize subjectivity and augment 
quality assurance [3,5,6].

One such tool, developed, evaluated, and applied by Beck et al., is 
an unbiased image analysis system called C-Path [7]. C-Path has been 
used to identify feature sets in tissue microarrays to predict 5-year 
survival of patients with breast carcinoma. Using a machine-learning 
algorithm and thousands of morphologic descriptors, the C-Path 
prognostic model accurately predicted good and poor prognosis 
patients and identified clinically significant morphologic features, 
some of which were not previously recognizable using traditional 
quantitative pathology techniques. Although the molecular basis for 
the prognositically significant morphologic phenotypes has yet to 
be elucidated, and the effectiveness of computer-aided pathological 
interpretation has yet to be established on whole-slide images and tested 
on a diverse set of images, this approach shows great potential because 
it has predicted survival outcomes with a high degree of statistical 
significance and has the potential for further refinement. This example 
illustrates the potential for using automated, unbiased image analysis 
and machine-learning systems for producing standardized, objective, 
reproducible results that could eventually support clinical practice [8].

Heterogeneous Data Integration
Advances in computational processing have enabled quantitative 

integration of heterogeneous, multi-format, multi-scale data-
particularly imaging and genomic data [2,9-12].

In one of the first applications to combine imaging and non-
imaging (protein expression) data, Lee and Madabhushi developed 
a Generalized Fusion Framework (GFF) to integrate the micro-scale 
morphological features obtained from digital histopathology slides with 
nano-scale protein expression measurements from mass spectrometry 
[13].  This GFF was created to observe whether quantitative integration 
of image-based signatures from digital histopathology slides with 
corresponding peptide measurements from mass spectrometry could 
be used to differentiate prostate cancer progressors with prostate 
cancer non-progressors. The challenge of integrating this multi-scale, 
multi-modal, multi-protocol data was overcome by combining the 3 
data modalities (architectural histopathology features, morphological 
histopathology features, and m/z mass spectrometry features in 51, 100, 
and 570 dimensions, respectively) into a common low-dimensional 
meta-space projection with 3 dimensions using principal component 
analysis. This projection was then normalized, concatenated, and 
reduced a second time with principal component analysis to yield the 
low-dimensional integration product of the original high-dimensional 
data.  Results reflected the suitability of using this GFF to integrate 
heterogeneous multi-format, multi-scale data for differentiating 
between patients with different disease profiles.

Later applications by Madabhushi et al., have explored additional 
methods for combining data modalities beyond principal component 
analysis (e.g., non-linear dimensionality reduction methods) and 
correlations between disease and markers in digital pathology [10], 
gene and protein expression [11], spectroscopy [12,14], ultrasound 
[15], and MRI [9,14,16].

Future Directions
While computer-based image analysis, heterogeneous data 

integration methods, and computer-aided prognostics are currently 
demonstrating their efficacy in the pre-operative or pre-therapeutic 
cancer population, they will inevitably have applicability in other fields.

In cardiovascular medicine, for instance, large amounts of 
macro-scale heart morphology and phenotype data (from MRI, 
hemodynamics, and echocardiograms), micro-scale whole-slide 
imaging data (from biopsies, donors, explants, and device placements), 
and nano-scale gene expression and transcriptome data are being 
collected at several institutions for clinical and research purposes 
[17]. Because typical cardiac pathology scoring systems are rather 
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rudimentary, such as the Dallas criteria for myocarditis [18] and the 
International Society for Heart and Lung Transplantation scoring 
of rejection in cardiac allografts [19], there is rich opportunity for 
computer-aided interpretation and multi-modality integration to 
provide new insights into myocardial disease mechanisms, severity and 
prognosis. As with the oncology applications described above, a key 
step in these myocardial applications will be correlation with clinical 
outcomes and current clinical reference standards. As heterogeneous 
data integration tools become increasingly sophisticated and validated, 
they could provide a rational basis for the identification of interpatient 
distinctions necessary for greater individualization of therapeutics.

Computers are becoming increasingly ready to supplement 
and enhance imaging (MRI, ultrasound), morphologic information 
(tissue), and molecular classification (whole-genome sequencing, 
expression profiling, proteomics, and metabolomics) with diagnostic, 
prognostic, and theragnostic predictions [8]. These computer-based 
tools for heterogeneous data integration have begun to demonstrate 
their effectiveness in large retrospective studies and will soon be ready 
for prospective, multi-institutional validation studies as the next step 
before adoption into clinical practice.
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