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Abiotic stress factors, such as drought, salinity, temperature 
extremes (high and low) and submergence cause significant yield losses. 
In the past decade, advances in ‘omics’ technologies has enhanced our 
genetic and molecular understanding of plant response to various 
abiotic stresses. Currently, numerous stress-responsive genes have been 
identified and functionally analyzed in transgenics. However, very 
limited success has been achieved in producing abiotic stress-tolerant 
cultivars. Therefore, there is a great need to identify novel genes/
pathways for effectively improving plant tolerance to abiotic stresses. 
Recently, metabolic pathways involved in abiotic stress responses have 
gained attention of researchers, a better understanding of which can 
help achieve this target. In this review, a brief overview of recent finding 
highlighting the importance of metabolic pathways in abiotic stress 
responses is presented. 

It is well established that metabolic changes is the key part of 
response to oxidative stress in microbes [1,2]. Recent gene expression 
studies have shown that genes involved in several metabolic pathways 
are affected under abiotic stress conditions in plants also [3-6]. In a 
comprehensive study in Arabidopsis cells, a profound effect of oxidative 
stress was observed on central metabolic pathways, such as tricarboxylic 
acid cycle, glycolysis and oxidative pentose phosphate pathway [4]. 
Further, a coordinated transcriptional response of the genes involved 
in metabolism was found to reconfigure metabolic fluxes to cope 
with metabolic hiatus. Interestingly, the overall metabolic response of 
Arabidopsis cells was found similar to the microbes [4], which suggest 
that knowledge from microbial system can also be transferred to plants 
to identify the key regulators of stress responses.

Many of metabolic pathways are involved in production of 
osmoprotectants, such as sugars (trehalose, sucrose and fructan), 
amino acids (tryptophan and proline) and ammonium compounds 
(polyamines and glycinebetaine). These molecules accumulate in plants 
under stress conditions as adaptive mechanism, which can provide 
stress tolerance. The manipulation of genes associated with production 
of such osmoprotectants has been used to improve stress tolerance in 
crop plants [7-9]. Other most important metabolic pathways are those 
involved in scavenging of reactive oxygen species (ROS) generated in 
response to abiotic stresses. ROS are toxic compounds, which cause 
damage to cellular components. The genetic engineering of enzymes 
(peroxidase and catalase) involved in detoxification of ROS can 
improve tolerance to abiotic stresses. Hormone metabolism has also 
emerged as key factor in regulating plant stress response. Although 
exact mechanism is still unknown, the enzymes involved in metabolism 
of auxin, cytokinin, ethylene and abscisic acid have been implicated in 
different stresses [10,11]. In fact, levels of some of these hormones are 
known to regulate the production of many secondary metabolites and 
osmoprotectants [12,13]. The pathways involved in biosynthesis of cell 
wall components, such as cellulose and suberin, also play important 
role in stress adaptation [14,15]. Carbohydrate and lipid metabolism 
pathways are also important targets of research as some of their 
components have been found to be regulated by abiotic stresses [16,17]. 
A few studies have already demonstrated that alteration of levels of 

soluble sugars and plant sterols can improve stress tolerance in plants 
[17,18]. It has been shown that increased carbohydrate metabolism can 
act as escape strategy for plants under submergence stress in an attempt 
to grow above water and resume photosynthesis [19].

Recently, metabolomics has been proposed as a complimentary 
approach to the genomics-assisted selection for crop improvement 
[20,21]. A few mQTLs have already been identified in Arabidopsis, 
tomato and Populus and have been shown to have intermediate 
hereditability [22,23]. The integration of QTL mapping with gene 
expression and metabolite profiling showed a complex relation among 
them [24]. In the same study, it was also found that major regulators 
of gene expression variation for aliphatic and indolic glucosinolate 
synthesis metabolic pathways, are biosynthetic genes not the 
transcription factors. Although substantial efforts are required in this 
direction, the present investigations may be taken as proof-of-concept 
studies for identification of mQTLs for abiotic stress tolerance.

The complexity of metabolism/metabolic pathways poses a 
challenge in identifying the key regulatory components of metabolic 
pathways involved in abiotic stress responses. A few databases of 
known metabolic pathways in different organisms are available and 
few models have been proposed [25-28], which can help investigate the 
key metabolic pathways involved in a particular biological response. 
Although better and user-friendly databases and tools are required, 
the existing databases and models can also be used to elucidate the key 
metabolic pathways and functional components responsible for abiotic 
stress responses. The availability of such tools can provide platform for 
system-level annotations and understanding of role of individual genes 
in overall metabolic network of an organism.

Metabolic engineering is the manipulation of specific enzymatic 
reactions for improvement of cellular properties. A few studies have 
already demonstrated the potential of metabolic engineering for 
enhancing stress tolerance in plants. So far, the focus of such studies has 
been on the manipulation of a single gene involved in a specific metabolic 
pathway. However, considering the complexity of abiotic stress trait, 
the manipulation of single gene may not be very effective. Therefore, it 
would be more advantageous to engineer multiple enzymatic reactions 
of the same or different metabolic pathways to generate abiotic stress 
tolerant plants. A few successful examples already exist in the literature, 
which used this strategy to generate plants with better stress tolerance 
[9]. These studies demonstrate the enormous potential of simultaneous 
manipulation of multiple steps of single pathway or multiple pathways. 
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Further, the identification of master regulators of critical metabolic 
pathways, such as transcription factors, can also provide an effective 
strategy for development of stress-tolerant plants via manipulating a 
single gene only.

In conclusion, the importance of metabolic pathways in abiotic 
stress response is clear now. Metabolomics is now being increasingly 
used to reveal plant stress responses. Therefore, there is a great need of 
systematic in-depth investigations to define their exact role and identify 
the major enzymes/pathways involved. Future pioneering studies in 
model plants can pave the way to identify the key regulators as target for 
genetic engineering of stress tolerance in crop plants. It has also been 
envisaged that metabolic fingerprinting can be used as a breeding tool 
for development of plants with best potential to tolerate abiotic stresses.
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