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Abstract

Ethanol is metabolized by Alcohol Dehydrogenase (ADH) to acetaldehyde and then irreversibly oxidized by
Aldehyde Dehydrogenase (ALDH) to nontoxic acetate. In individuals expressing the ALDH2*2 variant enzyme, the
rate of conversion from acetaldehyde to acetate is reduced and leads to flushing, nausea, and tachycardia due to
increased blood levels of acetaldehyde. The ALDH2*2 variant has a lowered NAD+ coenzyme binding affinity, which
results in a lowered clearance capacity toward acetaldehyde. This polymorphism is caused by the substitution of
glutamate for lysine at position 487 within the catalytic active site of ALDH2, resulting in effects on subunit and
quaternary complex activity. ALDH2*2 alleles are dominant over ALDH2*1 and therefore are expected to contribute
to the formation of inactive heterotetramers decreased enzymatic activity in both homozygous and heterozygous
individuals. Consequently, a higher susceptibility to various diseases such as Alzheimer’s, osteoporosis, and acute
coronary syndrome has been associated with ALDH2*2 carriers. Additionally, the polymorphism seems to affect the
efficacy of Glyceryl Trinitrate (GTN), a drug intended to treat coronary heart disease, in carriers of ALDH2*2 alleles.
However, the polymorphism is believed to afford a protective effect against alcoholism as the side effects of
acetaldehyde build-up are undesirable. Disulfiram, a drug historically used to treat alcohol dependency, induces the
same undesirable physiological effects as the variant enzyme in non-carriers by inhibiting the normal functioning of
ALDH2 enzyme.

Keywords: Aldehyde dehydrogenase-2 (ALDH2); Polymorphism;
Alcohol intoxication; Disulfuram; Nitroglycerin

Introduction
Approximately eight percent of the world’s population inherits a

point mutation in the Aldehyde Dehydrogenase-2 (ALDH2) gene. This
polymorphism, referred to as ALDH2*2, is most prevalent in those of
East Asian descent (Chinese, Japanese, Korean, and Taiwanese) and is
rarely detected in non-Asian individuals. Because of this genetic
variation, roughly 560 million people worldwide are particularly
susceptible to alcohol intoxication [1-3]. The ALDH2*2 polymorphism
encodes an inactivating, non-conservative amino acid substitution
within the mitochondrial aldehyde dehydrogenase gene product [4].
An extensive body of literature has accumulated to describe the
molecular underpinnings of the ALDH2*2 alcohol sensitivity
phenotype and has revealed a compelling exemplar of an enzymatically
dominant negative polymorphic gene product [4-10]. Recent data
suggests, however, that sensitivity to alcohol intoxication may be only
one of many susceptibilities of ALDH2*2 carriers. Here, we review the
available published data concerning the role of ALDH2 in ethanol
metabolism and associated phenotypic effects of ALDH2*2
polymorphism. We also point to a growing body of literature
implicating ALDH2 in such diverse health effects as cancer,

osteoporosis, and heart disease. Whether or not these additional
disease phenotypes are dependent upon co-exposure to alcohol is yet
to be firmly established. Figure 1 illustrates relative percentages of each
disease linked to the ALDH2 polymorphism. Cumulatively, these
recent findings highlight the need for reexamination of the role of
ALDH2 in disease susceptibility and a reprioritization of research goals
regarding the ALDH2*2 polymorphism.

Phenotypic variation in ethanol metabolism and ALDH2
polymorphism

Following alcohol consumption, ethanol is metabolized primarily in
the liver. Here, Alcohol Dehydrogenase 1B (ADH1B) oxidizes ethanol
to acetaldehyde. ADH is present in almost every bodily tissue and
actively metabolizes numerous aldehydic compounds. After ADH1B
converts ethanol to acetaldehyde, it is further oxidized by Aldehyde
Dehydrogenase (ALDH) isoenzymes to nontoxic acetate using NAD+

as a cofactor [11-17]. Two immunologically distinct ALDH isoenzymes
have been identified: Cytosolic ALDH1 and mitochondrial ALDH2.
Due to the lower Km value of ALDH2 for acetaldehyde in comparison
to ALDH1, ALDH2 is considered to be the primary enzyme for
ethanol metabolism in vivo. The ALDH2 gene is polymorphic with two
allellic variations: The wild type ALDH2*1 allele and the alternate
ALDH2*2 allele [18].
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Figure 1: Relative percentages of “disorders” or “diseases” that have
been associated with “ALDH2” polymorphism in the peer-reviewed
scientific literature. The total number of papers published on the
subject is ~46,000; however there is still disagreement on the
mechanism of action and environmental factors influencing
susceptibility and the onset of disease.

ALDH2*2 is an autosomal dominant allele; therefore, all carriers of
even a single ALDH2*2 allele are physiologically affected by
acetaldehyde toxicity following the consumption of ethanol [19,20].
Consequently, following ethanol exposure, ALDH2*2 carriers rely on
less-active ALDH1 for acetaldehyde clearance and experience a
flushing reaction to alcohol consumption due to elevated acetaldehyde
in the bloodstream. This phenomenon has been firmly linked to the
substitution of glutamate for lysine at position 487 within the catalytic
active site of ALDH2, resulting in effects on subunit and quaternary
complex activity. ALDH2*2 displays markedly reduced enzymatic
activity toward acetaldehyde in comparison to ALDH2*1 [21].
Although the Km value for acetaldehyde is relatively unaffected by the
Glu487Lys substitution (3.2 µM, versus 1 µM), the Km for NAD+ (a
necessary cofactor in acetaldehyde biotransformation) is markedly
higher (70 µM for ALDH2*1 versus 7400 µM for ALDH2*2) [20-22].
Importantly, the Km for ALDH2*2 exceeds the available concentration
of NAD+ in the cell by about 15-fold [23,24].

Figure 2 depicts alcohol metabolism in a liver with homozygous
expression of the ALDH2*1 enzymes (on the left) versus a liver with
expression of ALDH2*2 enzymes (on the right). In both the ALDH2*2
and ALDH2*1 livers, ADH converts ethanol to acetaldehyde. In a liver
with expression of the ALDH2*2 variant, the acetaldehyde substrate is
not as effectively metabolized. Homozygous ALDH2*2/2 tetrameric
gene products are expected to have less than 1-4% the activity of
ALDH2*1/1 homotetramers, and the dominant negative effect of
ALDH2*2 within the heterotetrameric complexes of heterozygotes
results in less than 50% the activity of homozygous ALDH2*1 enzyme
[12,21].

Characterization of ALDH2*2
ALDH2 was first identified in 1987, with the X-Ray crystallographic

structure of the gene product elucidated in 1999 [25]. Although the
ALDH2*1 allele is most common in populations worldwide, the allele
frequency of the ALDH2*2 variation as either homozygous or
heterozygous is 35-45% in East Asians [8,26]. All individuals with
ALDH2 enzymatic deficiency examined to date remarkably carry the

same amino acid substitution, which can be traced back approximately
2000-3000 years to the Han Chinese [27]. Luo et al. noted that the
specific halpotype carrying the ALDH2*2 allele was highest in
frequency in the Yunnan, South coastal, and East coastal areas of
China and decreases in frequency further inland. According to
archeological and historical evidence from this time period, evidence
points to the Pai-Yuei tribe as an origin of the mutation, as they
occupied the Southeastern coast of China into the Yunnan area as early
as 16 B.C. The Pai-Yuei people established an independent country in
this area, which lasted for around 160 years until it was conquered by
other tribes. The Yuei people then scattered to other areas of South and
Southwest China, Vietnam, and Thailand where they integrated with
other tribes, especially the Han tribe [27]. This scattering correlates
with the distribution of the ALDH2*2 mutation amongst people of
East Asian descent.

Figure 2: Normal ethanol metabolism versus metabolism in an
ALDH2*2 liver (Figure modified from Chen et al., 1994).

The human ALDH2 gene is located on chromosome 12 and consists
of 13 exons and 12 introns spanning approximately 44 kb [14,28,29].
The 517-amino acid gene product is expressed most abundantly in the
liver and stomach, but is present in all tissues throughout the body
[30]. The protein is posttranslationally processed and imported into
the mitochondria of liver cells [22]. Protein translation begins in the
cytosol, where a chaperone protein (hsp60 or hsp10) binds to the
growing polypeptide chain to prevent folding [31]. After complete
translation has occurred, a 17-amino acid transit sequence on the N-
terminus of the polypeptide is recognized and transported to a
receptor on the membrane of the mitochondria. Then, as the
chaperone protein is removed, the polypeptide sequence is actively
translocated through the inner and outer membrane of the
mitochondria where the transit sequence is subsequently cleaved as
part of the completion of folding and maturation of the enzyme inside
the mitochondrial matrix [32]. In its mature form, the tetrameric
enzyme is a homodimer of two dimers, where only two of the catalytic
sites on the entire tetramer maintain activity. Each subunit contains
three main domains: The catalytic domain, a NAD+ binding domain,
and an oligomerization domain [33].

In the enzymatic mechanism for ALDH-mediated oxidation, the
first step involves NAD+ binding at the active site followed by aldehyde
binding [34]. Subsequently, a thiohemiacetal adduct is formed due to

Citation: Gueldner J, Sayes C, Abel E, Bruce E (2016) Emerging Associations of the ALDH2*2 Polymorphism with Disease Susceptibility. J Drug
Metab Toxicol 7: 202. doi:10.4172/2157-7609.1000202

Page 2 of 7

J Drug Metab Toxicol
ISSN:2157-7609 JDMT, an open access journal

Volume 7 • Issue 2 • 1000202



the nucleophilic attack by cysteine 302 [35]. Wild-type ALDH2*1 has a
compulsory ordered mechanism in which cysteine 302 acts as a
nucleophile attacking the carbonyl group of the substrate aldehyde.
Prior to the nucleophilic attack, glutamate 268 accepts a hydride from
cysteine 302 rendering it a stronger nucleophile [1]. A hydride is then
transferred from cysteine 302 to the NAD+ cofactor and a high-energy
thioester bond is formed between the aldehyde and the enzyme.
Finally, the bond is hydrolyzed and NADH dissociates as a product;
this is the rate-limiting step of acetaldehyde oxidation [1]. Because of
the dramatic decrease in affinity of the ALDH2*2 enzyme for NADH,
this mechanism cannot proceed at normal physiological
concentrations of the cofactor.

Wild-type ALDH2*1 forms homotetramers in vitro. However,
ALDH2*2 alleles are dominant over ALDH2*1 and therefore are
expected to contribute to the formation of inactive heterotetramers
(ALHD2*1/ALDH2*2) and decreased enzymatic activity in
heterozygous individuals. Several hypotheses have been proposed to
explain the inhibitory effect of ALDH2*2 subunits on tetramer
enzymatic activity. Some have proposed that the two types of subunits
(ALDH2*1/ALDH2*2) create an allosteric interaction within the
heterotetramer, rendering the quaternary structure inactive. Others
hypothesize that the ALDH2*2 subunits destabilize NAD+ in the
ALDH2*1 cofactor binding site [5]. Finally, additional data
demonstrate a decrease in protein stability of the ALDH2*2 enzyme in
comparison to ALDH2*1 [36].

ALDH2*2 and alcohol dependence
Alcoholism is considered a chronic condition in which an

individual struggles to control alcohol intake. Numerous studies
indicate that alcoholism is less prevalent in individuals who possess the
ALDH2*2 allele, due to the undesirable effects of acetaldehyde buildup
in the body [1,4]. Evidence of this phenomenon exists in a landmark
study of 100 Chinese men by Thomasson et al. where there were
striking differences between alcoholic and nonalcoholic participants in
ALDH2 genotype and allele frequency. The ALDH2*2 allelic
frequencies were significantly lower in nonalcoholic subjects than in
alcoholic subjects (12% and 48% respectively) [4]. Furthermore,
evidence is also found in a comparative study conducted by
Hendershot et al that compares individuals with at least one ALDH2*2
allele to those with the ALDH2*1 homozygous genotype. Those with
ALDH2*2 alleles self-reported significantly more negative evaluations
of their own cognitive and behavioral impairment after consumption
of alcohol [37]. The anticipation of overwhelmingly negative
physiological reactions to alcohol may act as a deterrent to alcohol use
in individuals who inherit the low-activity ALDH2*2 variant allele
[4,37-39].

The dominant negative low enzyme activity associated with
expression of the ALDH2*2 allele leads to undesirable physiological
reactions that challenge a healthy liver following the consumption of
alcohol [36]. In an ALDH2*1 homozygous individual, consumption of
0.5 g/kg of ethanol (equivalent to 3-4 drinks in an average weight
male) led to a mean blood acetaldehyde concentration of 1.8 μM. In
ALDH2*1/2 and ALDH2*2 individuals, the same dose of ethanol led to
symptom-producing mean blood acetaldehyde concentrations of 57.5
and 108.7 μM respectively [22]. These data indicate that even those
individuals heterozygous for ALDH2*1/2 are much more sensitive to
alcohol intoxication than ALDH2*1 homozygotes [40].

Protection afforded by the ALDH2*2 allele against alcohol
dependency is more closely associated with frequency of heavy

drinking rather than the amount of alcohol consumed [18]. In a study
of Asian-American college students, it was found that the ALDH2*2
allele reduced the frequency of binge drinking. Individuals who inherit
the ALDH2*2 allele may adjust drinking habits in a way that alters the
relationship between alcohol consumption and problems with
dependence. These individuals may maintain similar drinking
frequency to their peers (due to social pressures, etc.), however given
their heightened physiological response to alcohol consumption, they
may learn to regulate or pace their consumption to maintain lower
levels of acetaldehyde blood concentration levels to avoid negative
physiological consequences [18].

Several studies have suggested that the inheritance of the ALDH2*2
allele may also indirectly prevent severe and permanent liver damage
from long-term alcohol abuse [41]. However, logically, individuals who
do not consume alcohol are not at risk of developing alcoholic liver
disease. By extension, individuals who express the ALDH2*2 enzyme
and avoid heavy alcohol consumption have lower risk of alcohol
related liver disease [42]. For example, the ALDH2*2 allele was found
to be uncommon in Japanese patients with alcohol dependency
syndrome and in those with liver disease, with a prevalence of only
2.3% in the alcohol dependent and 2.8% in non-dependent individuals
with liver disease as compared to 41% in the general population of
Japan [5].

Disulfiram and alcohol dependence
Disulfiram, commonly known by the trade name “Antabuse,” has

been used for over 60 years as a drug to treat alcoholism and
underscores the fundamental role of ALDH2 in moderating risk of
alcohol abuse [41]. The mechanism of action for disulfiram is to inhibit
the normally functioning ALDH2 enzyme in order to give rise to
negative physical responses such as nausea, vomiting, and hypotension
when alcohol is consumed. The intent of disulfiram prescription is to
mimic the ALDH2*2 low activity phenotype, causing a buildup of
acetaldehyde in tissues. Hence, the goal in the development of
disulfiram was to enable the ALDH2*1 population to experience the
same protective effect against alcoholism.

In an examination of the possible in vitro mechanism of disulfiram,
two methods were proposed. A study by Kitson et al. showed that
disulfiram causes an initial partial inhibition of ALDH2 followed by a
gradual and irreversible loss of enzymatic activity. Kitson proposed
that disulfiram forms an intermolecular mixed disulfide with one of
the active thiol sites on the enzyme, thereby reducing ALDH2*1
enzyme activity [41,43]. This mechanism is represented in Figure 3A.
Conversely, Vallari and Pietruszko proposed a mechanism in which
disulfiram binds to the active site thiol on one subunit and a cysteine
residue on a neighboring subunit, possibly outside of the active site
[11]. A potential intermediate in this mechanism would be an unstable
intermolecular mixed disulfide, which would then stabilize the inactive
form of the enzyme that contains two disulfide bonds to separate
cysteine residues [11]. This mechanism is represented in Figure 3B.
Both mechanisms involve the inactivation of the catalytic cysteine 302
residues by carbamylation in the substrate-binding site of the enzyme
and the formation of an intermolecular dilsulfide bond [41]. This is
similar to the binding of NAD+ to the cysteine 302 residue in normal
ALDH2 metabolism, except that in the case of disulfiram, the drug
irreversibly binds to the same cysteine residue to prevent the binding
of NAD+. Studies have provided evidence to support Vallari in the
hypothesis that disulfiram inhibits ALDH2 by forming an
intramolecular dilsulfide bond involving cysteine(s) located at the
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active site. However Kitson’s proposition cannot be ruled out due to the
rapidity of the conversion to an intramolecular disulfide bridge [41].

Figure 3: Proposed mechanisms of the disulfiram interaction with
ALDH2.

Disulfiram has been approved by the United States Food and Drug
Administration (US FDA) as an alcohol aversion therapeutic.
However, alcoholism is still a major problem due to the poor
compliance in drug usage that compromises the effectiveness of the
treatment when prescribed. Other issues with disulfiram treatment
include the progression of peripheral neuropathy [44,45]. This side
effect is dose dependent and data suggest that the decreased ALDH2
activity and subsequent buildup of acetaldehyde is the cause of the
disease, as in individuals possessing the ALDH2*2 mutation. A dose of
greater than 250 mg/day is the greatest factor in causing symptoms, so
reducing dosage or halting drug administration can reverse the
symptoms in most cases [45]. Unfortunately for those who possess the
ALDH2*2 mutation, no mechanism for restoring full enzymatic
activity exists. Therefore, these individuals are more susceptible to
developing alcohol induced peripheral neuropathy from the
consumption of ethanol. In a study by Masaki et al., patients with the
ALDH2*2 mutation had the highest incidence of peripheral
neuropathy, while the lowest incidence occurred in those with the
wildtype ALDH2, high activity phenotype [46].

Diseases associated with the inheritance of ALDH2*2
Numerous studies have concluded that there may be an association

between the ALDH2 polymorphism and a wide range of health
complications; Figure 1 describes disorders and diseases that have been
associated with the ALDH2 polymorphism in a literature search.
Although many of these associations exist, it does not necessarily
causally link these diseases to a functioning or malfunctioning ALDH2
enzyme, as there could be multiple mechanisms and contributing
factors leading to the development of these diseases and disorders. In
the health complications discussed herein, multiple researchers believe
through experimental evidence that these associations are linked the
the ALDH2 polymorphism, however more studies need to be
conducted to confirm these causally.

ALDH2*2 and disease among drinkers: In 2007, the International
Agency for Research on Cancer (IARC) classified ethanol as a group 1

carcinogen in humans due to its metabolism to acetaldehyde its
associated capacity to promote malignancy [47]. Since 2007, numerous
epidemiological studies have investigated the link between inheritance
of the ALDH2*2 allele and cancer susceptibility in the context of
alcohol consumption. A 2015 meta-analysis of ALDH2*2 and all
cancers, revealed roughly 20% increased cancer risk in ALDH2*2
homozygous individuals [48]. In site-specific studies, potential linkages
of the ALDH*2 genotype to colorectal, stomach, pancreatic, breast, and
head and neck cancers have been suggested. A subset of these site-
specific cancers have been further investigated via meta-analyses
[48-50]. Nonetheless, weak associations and study limitations prevent
sweeping conclusions regarding the role(s) of ALDH2*2 inheritance in
cancer risk. For example, in a meta-analysis of colorectal cancer (CRC)
risk and the ALDH2 genotype, the ALDH2*2 allele was unexpectedly
found to be protective of CRC [51]. The authors admit, however, that
stratification according to drinking status was impossible due to
inconsistencies in data collection among studies. More convincing data
regarding ethanol consumption, ALDH2 genotype, and cancer risk has
been documented in in vitro studies and mouse models [52-58].

ALDH2*2 and osteoporosis: Osteoporosis is characterized by a
decrease in bone mineral density, bone mass, and bone strength, which
ultimately leads to an increased risk of fracture [59]. In a genetic screen
of known osteoporosis related genes in 403 elderly Japanese, ALDH2*2
was the only mutation strongly associated with the risk of osteoporosis
[60]. This association was especially prevalent in ALDH2*2/2
homozygotes and in women. In support of this possible association
between ALDH2*2 polymorphism and osteoporosis, evidence from
rodent studies conducted at clinically relevant doses of acetaldehyde
showed strong inhibitory effects toward formation of osteoblast
progenitor cells [61]. In cultured mouse bone marrow cells incubated
with 0.06% acetaldehyde (a similar concentration to that reached in
vivo in humans with alcohol dependency), osteoblast formation was
completely eliminated [1,61]. At a concentration of 0.004–0.02%,
osteoblast formation was significantly decreased. Furthermore, in the
same study, reduced osteoblast formation was also observed in human
bone marrow cells derived from young adults with alcohol
dependency. The confluence of osteoblast progenitors in this study was
reduced to around 30% in cells derived from alcoholic dependent
individuals as compared to age-matched samples from non-dependent
individuals [61]. These data provide possible evidence for a direct
relationship between acetaldehyde accumulation in the cells and
osteoporosis, suggesting that ALHD2*2 may be a contributing factor to
osteoporosis in East Asians who consume alcohol due to compromised
clearance of acetaldehyde [62].

ALDH2*2 and heart disease: Acute Coronary Syndrome (ACS) is an
umbrella term describing situations in which the blood supply to the
heart is blocked. Acute coronary syndrome includes physiological
conditions such as elevated blood pressure, heart attacks, and
hypertension. Several studies have shown that the ALDH2*2 mutation
is an independent risk factor for ACS [63-66]. More specifically, other
studies have confirmed that an ALDH2 mutation is a strong risk factor
for symptoms of elevated blood pressure and hypertension in males
who consume high amounts of alcohol [67,68]. A recent study by
Chang et al. supports these claims. Individuals who were homozygous
for ALDH2*2/2 were more likely to be diagnosed with hypertension
than those who did not carry the ALDH2*2 allele. Additionally, the
risk for development of hypertension was higher in ALDH2*2 carriers
who were heavy/moderate alcohol drinkers than those who did not
drink alcohol, where the risk was completely absent [66]. From this,
one can infer that individuals who inherit the ALDH2*2 allele have a
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higher likelihood of developing symptoms of ACS from alcohol
consumption, which puts a large percent of the Asian subpopulation at
risk. The presence of an ALDH2*2 allele by itself is not causally
associated with hypertension, rather consumption of alcohol in
combination in individuals with the low activity variant which leads to
an increase in acetaldehyde concentrations and in aids in the rapid
diffusion of aldehydes across cellular membranes is causally associated
with adverse physiological issues [1]. Those who express the wild type
enzyme are less likely to develop disease from complications stemming
from a decreased metabolic rate [28,42,48,50,51,69].

ALDH2*2 and disease unrelated to alcohol consumption: Ischemia
occurs when blood flow to a certain tissue system is decreased, which
can ultimately damage the tissue. In myocardial ischemia, most of the
cardiac damage that occurs is believed to be due to excessive
generation of reactive oxygen species, leading to peroxidation of
unsaturated fatty acids that can form toxic end products such as the
reactive aldehyde, 4-hydroxynonenal (4-HNE) [70,71]. Due to damage
to the cardiac myocytes, excessive production of 4-HNE may
ultimately impair cardiac contractility. ALDH2 has been shown to
oxidize 4-HNE to a less reactive product and is hypothesized to be a
protective factor [72]. Conversely, the ALDH2*2 genotype is thought
to be associated with increased apoptosis and myocardial damage
during ischemia [1,73]. In an in vitro study, in comparison to wildtype
ALDH2*1, heterozygous ALDH2*2/1 tissues were highly sensitive to
simulated ischemia in that they displayed significantly elevated levels
of ROS and apoptosis [73]. Animal studies also support a role for
ALDH2*1 in protection against myocardial ischemia. ALDH2*2 mice
had exacerbated cardiac damage following ischemia-reperfusion as
well as increased ROS production and endothelial dysfunction [74-76].

ALDH2*2 and Alzheimer’s disease: Alzheimer’s disease is
characterized by progressive mental deterioration. Due to the nature
and localization of the ALDH2 enzyme, certain studies have focused
on understanding its role in Alzheimer’s progression. In a study of
more than 2,000 Japanese women, levels of serum lipid peroxidases,
indicating the onset of Alzheimer’s disease, were higher in ALDH2*2
carriers, even after an exclusion of drinking behaviors [77]. Other
epidemiological studies indicate a possible higher incidence of
Alzheimer’s in people of Asian descent with the ALDH2*2 genotype
[69]. In later stages of Alzheimer’s neurodegeneration, there is a
progressive loss in mitochondrial function and defects in
mitochondrial metabolism develop. Inheritance of the ALHD2*2 allele
has been linked to Alzheimer’s due to a reduced ability to remove and
detoxify the 4-HNE that accumulates in the hippocampal region of the
brain [78]. Early stages of Alzheimer’s disease generate reactive oxygen
species, which result in the oxidation of lipid membranes and an
accumulation of 4-HNE [79]. Researchers propose that the ALDH2*1
homozygous enzyme is effective at removing 4-HNE, while the
presence a single ALDH2*2 allele is expected to impair this process,
suggesting an association between an increased risk in developing
Alzheimer’s, oxidative stress, and ALDH2*2. This may also indicate
that the removal of other toxic aldehydes could be inhibited by the
ALDH2*2 mutation, but further study is needed. In an individual
diagnosed with Alzheimer’s, it is plausible that the disease may
progress more rapidly in someone who possesses ALHD2*2 than
someone who does not possess the mutation, although this is yet to be
confirmed with reproducibility [76,80].

ALDH2*2 and drug use: Nitroglycerin, otherwise known as glyceryl
trinitrate or GTN, was first developed and manufactured by Alfred
Nobel in 1876 and has since been used to treat symptoms of coronary

heart disease [81]. It is believed that GTN is biotransformed at least
partially by mitochondrial ALDH2 to release pharmacologically active
NO or S-nitrosothiol, which then activates cGMP-mediated cell
signaling to relax vascular smooth muscle [33]. This drug has been
extremely important in treating angina and heart failure for over 130
years and been called a “wonder drug” by patients who have used it
correctly. However, in at least part of the Asian population this drug is
has been proven to be ineffective (especially for those who inherit the
ALDH2*2 mutation). The presence of the ALDH2*2 subunit limits
GTN metabolic activation and therefore does not produce the
intended effects against symptoms of coronary heart disease [33]. It
was found that both homozygotes and heterozygotes have decreased
efficacy of sublingual administration of GTN. The catalytic efficiency
(Vmax/Km) of the ALDH2*2/2 enzyme was shown to be a mere 6-7%
of that of the ALDH2*1/1 enzyme, while the ALDH2*2/1 enzyme
showed intermediate efficiency (8-15% of the ALDH2*1/1 enzyme).
Therefore, race may be an important factor in the utility and dose-
response of this cardiovascular drug, and potentially other drugs
affected by ALDH2.

Conclusion
The ALDH2 enzyme is one of the most important enzymes in

converting ethanol to acetate in alcohol metabolism. Amongst the
Asian population, it is fairly common to possess at least one
polymorphic ALHD2*2 allele either in the homozygous or the
heterozygous form, producing different levels of deficiency in the
enzyme that ultimately translates into the mitochondria of the liver
cells. The ALHD2*2 polymorphism in the second step of the oxidation
reaction lacks an appropriate Km for the substrate NAD+ as well as
contains an altered substrate binding site and therefore has a lower
affinity for acetaldehyde, causing a toxic buildup in the tissues.
Acetaldehyde is considered a carcinogen and travels easily through cell
membranes to other parts of the body which can cause many
downstream problems. Complications can include head and neck
cancers, esophageal cancers, heart complications, osteoporosis,
Alzheimer’s disease, and many others. However, it is important to note
that due to the immediate negative physiological responses of an
ALDH2*2 carrier after alcohol consumption, alcohol dependence and
binge drinking activities are likely to decrease. This creates a protective
affect by the ALDH2*2 enzyme. Similarly, the drug disulfiram inhibits
normal ALDH2 activity, producing the same effect in wildtype
homozygotes from alcohol that would be observed in ALDH2*2
carriers. Disulfiram is effective against alcoholism when taken by
producing the same negative side effects as the ALDH2*2
polymorphism.

The ALDH2*2 polymorphism is well studied due to its major role
in altering the effects of alcohol consumption in a large portion of the
population. These studies have been important for not only those who
possess the polymorphism, but also for the description of toxicity from
ethanol metabolism byproducts for anyone who imbibes an ethanol-
based product. Elucidating the mechanisms by which this specific
polymorphism acts can aid future medical researchers in protecting
those whose ALDH2 enzymes cannot properly process toxic aldehydes.
Five hundred sixty million people currently carry this mutation and
due to the genetic dominance of the ALDH2*2 allele, this number will
likely grow in the future as it is passed onto heterozygous
(ALDH2*1/2) children from carrying parents. Cumulatively, these
studies suggest that new recommendations for the care of carriers of
the ALDH2*2 allele should be considered.
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