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Introduction
The upsurge of resistant and pathogenic infectious bacteria presents 

an idiosyncratic challenge to medicine. Among such pathogens, the 
spread of multidrug-resistant ‘ESKAPE’ organisms (Enterococcus 
spp., Staphylococcus aureus, Klebsiella spp., Acinetobacter baumannii, 
Pseudomonas aeruginosa and Enterobacter spp.) seems to be an 
enormous task to take on [1]. Indeed, some Gram-negative bacteria 
strains are resistant to all the currently available antibiotics [2]. The 
high infectivity of some bacterial strains, in addition to their resistance 
characteristics, has also raised numerous problems for neonates and 
elderly people in many parts of the world [3,4]. 

If on the one hand bacterial strains are becoming more dangerous 
and lethal each day, on the other, the scientific community is 
constantly preparing novel antibiotic compounds to control bacterial 
infectious diseases, and among these compounds are the antimicrobial 
peptides (AMPs) [5-8]. These compounds create new perspectives in 
the control of resistant bacteria due to a myriad of functions within 
a single compound, including bactericidal, fungicidal, anti-virus, 
immunomodulatory, anti-LPS and antitumor activities [7,9-14]. 
Antibiotics in general turn off or threaten essential cellular functions, 
reducing microorganism viability and resistance mechanisms, and 
thus seem to exploit several possible strategies of drug prevention. 
In such a dramatic and dynamic relationship between the host and 
bacterial pathogens, there are multiple genes and proteins involved 
that could be used in understanding this relationship. However, these 
proteins can also be seen as targets for the development of novel 
antibiotics, including peptides that could be designed to dock such 
molecules. And at this point, proteomics may be a reliable tool that 
could contribute to drug development with clinical purposes. Although 
the major types of clinically important resistance mechanisms have 
been elucidated for a long time, being generally well understood 
[15,16], bacteria have also created some new strategies to evade novel 
antibiotics [17,18]. Moreover, proteomics, and especially peptidomics, 
could be exploited to screen protein and peptide sequences that could 
be used, after optimization, in the development of novel antibiotics. 
With these points in mind, this review will focus on the use of original 
proteomic insights to discover pathogen targets and develop peptides, 

giving some directions for the next steps that proteomics could take in 
bacterial control.

Bacterial Resistance and Related Targets: The Heads 
Side of the Coin

In recent years the bacterial resistance problem has spread across 
all the continents and has now become a world issue. Bacterial 
infections caused by resistant strains cause complications in numerous 
hospitals worldwide, especially in patients compromised by age, 
disease and treatments with immunity-suppressant medications 
[19]. The resistance mechanisms include direct antibiotic destruction 
as occasioned by β-lactamases; target modifications such as the 
mutation on 30S ribosomal protein RpsL that confers streptomycin 
resistance; and penetration restriction and/or drug efflux as observed 
in the linezolid efflux occasioned by the AcrAB–TolC multidrug pump 
[20,21]. In summary, cases of resistance to all the mainstream antibiotic 
classes employed in clinical practice have been reported [17,22]. In 
this context, it is vital to intensify the understanding of resistance 
mechanisms in order to develop pharmacies with prospective activity 
against bacterial pathogens. To fill the manifold gaps that remain in 
our understanding of bacterial resistance, proteomics has been used to 
elucidate bacterial physiology in response to the presence of antibiotic 
compounds [17]. In fact, proteomics has advanced to being an essential 
tool for this research field, due to rapid advances in whole genome 
sequencing and proteomic technologies [23]. 

In spite of these novel technologies, bacterial resistance has been 
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mainly explored by 2-DE-based proteomic approaches focusing on 
different strains, multiple antibiotics and several stress conditions 
[17,18,23-29]. Furthermore, label-free quantitative proteomics have 
also been used to better understand the resistance process. Methicillin-
resistant Staphylococcus aureus (MRSA), one of the most studied 
microorganisms that are conspicuous sources of deadly bacterial 
infections in hospitals, has been also focused by counting-based label-
free proteomics [30-34]. In an interesting report, global responses in 
MRSA and methicillin-susceptible S. aureus (MSSA) treated with sub-
inhibitory oxacillin doses were studied. Oxacillin induced a modification 
in MRSA protein expression, with β-lactamase and penicillin-binding 
protein 2a clearly up-regulated. Moreover, as also previously observed, 
the presence of an antibiotic leads to a modification in the peptidoglycan 
biosynthesis pathway and carbohydrate metabolism [17,18,30]. 

Cationic AMPs resistance

Nevertheless, the examination of bacterial resistance by proteomics 
tools has not been restricted only to lactams. Bacterial resistance toward 
AMPs has also been studied, as summarized in Figure 1, because these 
compounds hold great promise for upcoming years in the field of 
antibiotic development. In general, AMPs may act directly on bacterial 
membranes [9-14], and it is known that polymyxins, which are the 
peptides that are normally commercialized, act on lipid A interaction 
from phospholipids and lipopolysaccharides (LPSs), competitively 
displacing Ca2+ and Mg2+ [9]. In both cases, peptides cause enormous 
disturbance to the bacterial outer membrane, inflicting damage on cell 
content and effecting further bacterial death [35]. But the way in which 
bacteria evade this peptide stress is a very intriguing question. Fehri et al. 
[36] used proteomic techniques to elucidate the resistance response of

Mycoplasma pulmonis challenged by the AMPs mellitin and gramicidin 
D. In this report they establish a clear correlation between antimicrobial 
resistance and stress reaction, and it was possible to observe an
alteration in the expression of genes involved in stress response, such
as the hrcA gene, which controls proteinase Lon and DnaK chaperone
expression. The same authors also observed an up-regulation in energy 
metabolism enzymes, probably directed to balancing the increased
energy demand [36]. Similar data were obtained by Maria-Neto et al.
[18], in a study that also observed the up-regulation of proteins involved 
in stress response and energy metabolism by using an Escherichia coli
model with high resistance to magainin. Those authors also observed
an improvement in the expression of PNPase, which is responsible for
catalyzing mRNA molecules detaching nucleoside diphosphate. This
compound stimulates a high energy level in diphosphate bonds. These
data suggest that an enhancement in energy metabolism seems to be
essential for bacterial resistance.

Furthermore, nitrogen metabolism was also modified, with an 
up-regulation of glutamine synthetase enzyme, which is capable 
of activating alterations in the cell wall, such as wall thickness, 
or of decreasing peptidoglycan cross-linking. Finally and no less 
importantly, the up-regulation of glucan biosynthesis of protein G was 
confirmed. This protein is closely involved in cell osmolarity regulation 
and in cellular envelope organization [18]. Other models also showed 
that bacterial response to the presence of AMPs is a major combination 
of stress avoidance and energy metabolism improvement. For example, 
other authors achieved the same data by using a combo of proteomic 
tools and real-time PCR in order to study the response of Vibrio 
parahaemolyticus resistance induced by Q6 AMP [37,38]. 
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Figure 1: Schematic bacterial cell and the resistance mechanisms to antimicrobial peptides (AMPs) elucidated until now. Arrows pointing upward indicated pathway 
up-regulation and arrows pointing down indicate pathways down-regulation. Brown helical structures show a poly-alanine antimicrobial peptide Pa-MAP and blue 
helical structures represent porines and membrane channels. Red dotted line represents charge modification in anionic bacterial cell surface. Metabolic pathways 
included energy and amino acid synthesis pathways.
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Colistin resistance

Among the AMPs, colistin resistance is leading the number of 
studies. Fernandez-Reyes et al. [39] showed 35 proteins differentially 
synthesized in a comparison between colistin-resistant and -susceptible 
A. baumannii strains. In resistant strains three outer membrane porins 
were observed. OMPs (Outer Membrane Proteins) were also found,
although colistin does not use porins to cross the outer membrane. The 
differential porin expression related to polymyxin resistance has also
been defined in Salmonella typhymurium, Pseudomonas spp. and E.
coli strains [40,41]. Furthermore, a study performed by Fernandez et
al. [42] showed the identification of a protein that seems to be involved 
in the construction of CsuA/B channels in P. aeruginosa polymixin-
resistant strains. This modification promotes the bacterium’s capability 
of forming biofilms, which have been considered a key virulence factor 
[43].

It is important to remember that the central question seems to 
involve how colistin-resistant bacteria modify the LPS binding site 
on the outer membrane, preventing the antibiotic from entering the 
periplasmic space. This antibiotic attachment could be primarily 
affected by the combination of additional palmitic acid units, 
leading to an improvement in LPS hydrophobicity. Additionally, 
structural modifications can also occur by esterification of the 
lipid A phosphate group, causing a decreased negative charge [44]. 
The reduction of anionic charges seems to be an important issue in 
bacterial resistance to cationic AMPs. For example, Gram-positive 
bacteria can resist cationic AMPs by adjusting their anionic teichoic 
acids following amalgamation of D-alanyl residues to neutralize their 
superficial charge. This electrochemical modification modifies the 
barrier properties of Streptococcus cell walls and protects the bacterial 
membrane by decreasing the AMP penetration [45]. Furthermore, 
other genes and proteins have also been related to resistance to colistin. 
In a proteomic study of S. typhymurium strains resistant to colistin, 
none of the enzymes involved in LPS modification was identified, 
while PhoP, a LPS phosphorylation system component, was observed 
in the resistant strain [46]. Moreover, in colistin-resistant strains, 
a small periplasmic protein (OsmY), which is used as stress marker, 
was also located, and it is hypothesized that OsmY may compete with 
colistin, thus circumventing bacterial cell death [47,48]. Many other 
proteins have been found in colistin-resistant bacteria, including signal 
peptidases involved in cell invasion [48], and also multiple ribosomal 
proteins [39]. Fernandez et al. [42] suggested that in A. baumannii 
colistin-resistant strains, an up-regulation of the ribosomal protein 
S2 happens, which assists in periplasmic molecular translocation. This 
process could reduce the activity of the chaperone system, causing a loss 
in protein folding and deterioration in the overall protein synthesis.

In addition to colistin, heterogeneous vancomycin-intermediate 
S. aureus (hVISA), normally associated with clinical treatment failure,
was also evaluated by proteomic techniques, since the hVISA resistance 
mechanism had not been fully clarified. For that, comparative
proteomic analysis of two pairs of isogenic vancomycin-susceptible S.
aureus (VSSA) and hVISA strains showed five up-regulated proteins
(IsaA, MsrA2, Asp23, GpmA, and AhpC) but after further analyses,
including real-time PCR, only the increased expression of isaA, a
transglycosilase involved in peptidoglycan cleavage, may be related to
hVISA resistance [49,50].

The challenge of multi-resistance understanding

Despite the exciting contributions of proteomics, it seems that 

the resistance process involves something much more complex 
than one or two proteins. Such complexity clearly makes it difficult 
to use a proteomic approach to find the holy grail of resistance, as 
occurred in the discovery of lactamase years ago. In this context, the 
understanding of multi-resistance to different classes of antibiotics 
has also been studied, but only conflicting data have been found [51]. 
Some authors noticed some equal protein targets related to resistance 
against different antibiotics. For example, the low abundance of two 
components of respiratory nitrate reductase (Nar) was validated in 
the presence of streptomycin, gentamicine, ceftazidime, tetracycline 
and nalidixic acid-resistant Escherichia coli strains by using gel-
based proteomics and Western blot [52]. These data suggest that a 
low abundance of Nar seems to be essential for E. coli in resistance 
to aminoglycoside and cephalosporin antibiotics. Other authors also 
proposed that carbohydrate, lipid and amino acid metabolic pathways 
have an important role in the E. coli resistance process [17,19]. Multi-
drug-resistant A. baumannii was also compared in large-scale 2D LC/
MS/MS-based quantitative proteomics with drug-sensitive strains 
[53]. Interestingly, twenty percent of the expressed proteome was 
modified at least two-fold between the compared strains, including 
proteins related to resistance mechanisms, alteration of xenobiotics 
or drug transportation. Moreover porins, stress-response-related 
proteins, OMPs (Outer Membrane Proteins), secretion-related 
proteins, transporters, cell wall- and expolysaccharide-related proteins 
and lipoproteins were also detected, showing an extremely complex 
panorama [53]. 

All those data have allowed us to only scratch the surface of 
knowledge about resistance processes (Figure 1), since all those 
pathways could be a reflection of antibiotic therapy stress and, in 
spite of information provided for the understanding of bacterial 
physiology, the AMPs studied so far may not good candidates for drug 
development. Moreover, AMP mechanisms of action have not been 
fully elucidated. So it is still necessary to consider new routes to clarify 
the mechanisms established by these microorganisms to avoid the 
activity of antimicrobial molecules. Little is known about the metabolic 
and structural cellular modifications that start the resistance process. 
More wide-ranging studies must be performed by using multiple 
omics tools with the aim of explicating the processes that occur in 
sub-cellular structures, and in the near future we will probably see a 
more reliable map of strategies that bacteria use to evade AMP action. 
Such studies will unquestionably lead to the main targets and also to 
the development of new pharmacies to combat pathogens of clinical 
importance, providing unusual and extraordinary alternatives for the 
treatment of patients with chronic infections. 

Antimicrobial Peptide Discovery and Design: The Tails 
Side of the Coin

If on the one hand the discovery of bacterial targets for antibiotic 
development has improved in recent years, on the other the discovery 
of AMPs by omics is just beginning. In spite of the enormous databanks 
created by proteomics and peptidomics, there are some limitations to 
those techniques. First, the work with native plants and animals has been 
extremely limited due to incomplete or inexistent reference databanks 
[54]. This clearly reduces the peptide matches in the database, decreasing 
the possibility of finding small peptides. Moreover, since predicting 
AMPs has been an enormous and unresolved task in the last decade, 
the search has been limited to peptides with known patterns including, 
specifically, folds and conserved Cys-Cys bond arrangements [55,56]. 
Success in finding AMPs has also been hindered by limited protein 
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detection, especially for peptides at lower concentrations and small 
molecular sizes. Both problems have restricted the discovery of AMPs 
by using 2D-gel based methods. Nevertheless, despite such pitfalls, the 
screening of AMPs continues to focus on a variety of organisms and a 
number of research groups are involved (Figure 2).

Amphibians

One of the key targets in sorting AMPs using peptidomics has 
recently been to study amphibian secretions, due to the relative ease 
with which they are extracted and also thanks to the large amounts 
peptides found. Amphibians also produce a wide variety of skin 
defensive compounds in response to different abiotic and biotic factors 
for their everyday survival, which makes them interesting study models 
[57]. Peptidomic investigation has led to the categorization of multiple 
AMPs in norepinephrine-stimulated skin secretions of three species of 
frogs from the Ranidae family, including Lithobates forreri, Hylarana 
luctuosa, and Hylarana signata [58]. Different AMP classes were 
observed among the three species, including ranatuerins, brevinins, 
temporins, esculentins and palustrins. In addition to the clear 
biotechnological potential of these peptides, the data were also used to 
better understand the phylogenetic relations between the three species. 
The same group also explored Merlin’s clawed frog Pseudhymenochirus 
merlini from the Pipidae family by similar methods [59], showing 
peptides belonging to the hymenochirin and pseudhymenochirin 
families. Additionally, dermaseptin-like AMPs were also found in 
Pachymedusa dacnicolor. In addition to AMPs, post-translationally 
modified peptides with anti-infectivity capability such as bradykinins 
were also detected by MS in this same species, showing potent 
antibacterial activity against various pathogenic bacteria [60].

Indeed, AMP diversity in skin secretions is extremely high. In 
the case of the torrent frog, Amolops jingdongensis, 31 antimicrobial 
peptides belonging to nine different families were identified, including 
brevinins, odorranains, esculentins, temporins, amolopins and 
ranacyclins, as well two novel classes named jingdongins -1 and -2 [61]. 
Both were synthesized and their antimicrobial activities confirmed, 
clearly indicating the screening potential of the peptidomics technique. 
Furthermore, 29 different antimicrobial peptide precursors were 
characterized from the skin of Hylarana spinulosa, which have 
produced 23 mature AMPs pertaining to 12 different families. 

In order to confirm the AMPs in the skin tissue and improve 
peptidome coverage, a combination of liquid chromatography with 
tandem mass spectrometry and gas-phase fractionation analysis was 
used. The antibacterial activities of peptides were further confirmed [62]. 
In fact, the combination of multiple tools for screening novel AMPs has 
definitively improved the number of goals in this field, especially due 
to coverage enhancement [62]. In this case, the mishmash of multiple 
omics tools such as proteome, peptidome, transcriptome and genome 
allow researchers to improve the detection from dozens to hundreds 
or thousands of AMPs. In the case of amphibian secretions, those 
techniques were successfully combined. Genomics and peptidomics 
were used in studying an array of anti-infection AMPs from the skin of 
the frog Odorrana grahami. From an individual skin, 372 cDNA AMPs 
sequences were described, encoding more than 100 AMPs. 

This specific contribution almost triples the number of currently 
reported amphibian AMPs. Furthermore, diversification patterns 
suggest that point mutations as well as insertions, deletions and 
shuffling of oligonucleotide sequences were mainly responsible for 
this remarkable diversity [63]. In addition to an astonishing number of 
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AMPs that could be explored as pharmacies in the future, this specific 
study produced a novel hypothesis in the animal defense process, 
casting doubt on the generally held opinion that only two or three 
dozen different AMPs are able to protect an amphibian. 

The antimicrobial mechanisms of peptides selected were also 
examined, showing that they could exert their bactericidal functions 
by different strategies including peeling off the cell walls, making 
lamellar mesosome-like structures, yielding pores and inducing DNA 
condensation [63]. Years later [64], a strategy for peptide structural 
characterization, including the integration of shotgun cDNAs cloning 
encoding peptide precursors, deduction of supposed bioactive AMP 
structures and validation of these structures using tandem MS/MS 
sequencing were performed. These techniques led to the elucidation of 
the primary structures of nigrocin-2 homologues from skin secretions 
of four species of Chinese Odorrana frogs. Synthetic AMPs were 
challenged against bacteria and antimicrobial activities were confirmed.

Insects 

But not only amphibian secretions have been explored; insects have 
been also focused in this field (Figure 2). A very comprehensive AMP 
repertoire from the wax moth Galleria mellonella hemolymph was 
investigated by using LC/MS, showing 18 AMPs including lysozyme 
fragments, moricin-like peptides, cecropins, gloverin, proline-rich 
peptides, anionic peptides, galiomicin, gallerimycin, serine protease 
inhibitor 2 and heliocin-like peptide [65]. Another example of 
successful AMP screenings is the insect venoms, in spite of noxious 
effects inflicted by them, which also show high peptide content and 
less complicated extraction procedures. Furthermore, venoms are also 
found in several animals with no genetic relations, which improved 
the possibility of finding really unusual AMPs. In this context, ants 
from the Dinoponera genus were explored by complementary mass 
spectrometric approaches. In addition to proteomic characterizations, 
two AMPs, called Dq-3162 and Da-3177, were identified and evaluated, 
showing wide-ranging antimicrobial activity [66]. Moreover, a 
combination of genomics and peptidomics was used to explore the 
venom gland of the wasp Vespa tropica, allowing the identification of 
nine different AMPs classified as mastoparan and vespid chemotactic 
peptides [67]. 

Mammals

Finally and no less importantly, mammals have also been evaluated 
for their abilities to produce AMPs, by proteomic tools (Figure 2). One 
example was a vampirome study [68]. Vampire bats are famous for 
being the only mammals that strictly feed on fresh blood. Since their 
saliva has been associated with anticoagulants, this secretion is an 
obvious target for drug screening. With this aim, the submandibular 
salivary glands of Desmodus rotundus were evaluated by transcriptomic 
analyses and, surprisingly, in addition to anticoagulant and vasodilator 
peptides, members of the TSG-6 (anti-inflammatory), antigen 5/CRISP 
and CCL28-like AMP protein families were also sequenced. Proteome 
analysis by nano LC-MS/MS confirmed the data [68]. 

Another mammalian fluid focused by AMP screening was milk. 
Milk is conventionally considered a perfect source of the basic essential 
nutrients required by newborns. A thorough examination in the last 
decade revealed that milk represents a more efficient ensemble of 
components that benefit infants and mothers, which included host-
protection and also AMP synthesis. Peptidomics was used to analyze 
human milk, yielding an extensive protein array showing over 300 

milk peptides yielded by larger protein milk components including 
β-casein [69]. Since a wide number of observed peptides showed 
significant sequence overlap with AMPs, antibacterial assays were 
performed, showing that milk peptide mixtures were able to inhibit 
bacterial development. Furthermore, goats’ milk was also evaluated 
in order to better understand the proteins synthesized in response 
to intramammary challenge with bacterial LPS, which elicited strong 
animal immune responses [70]. Early 2-DE-based proteomics 
evaluation revealed few modifications in the expression of casein and 
plasma protein serum albumin, which are known to leak into milk 
during coliform mastitis in dairy cattle. Moreover, peptides were 
sequenced using nano-flow liquid chromatography coupled with 
tandem MS and, despite the notable presence of casein proteins and 
β-lactoglobulin, AMPs from the cathelicidn family was also observed 
[70]. These data suggest that milk proteins contain AMPs, providing 
a selective advantage through evolution by protecting the mother’s 
mammary gland and her nursing offspring from infection.

Endogenous peptides

Rather than just protein degradation artifacts, endogenous peptides 
have been established to be important bioactive molecules acting as 
neurotransmitters, hormones, and antimicrobial agents. Since AMPs 
have common properties such as cationicity, amphiphilicity and helical 
structures, peptidomics have been also used to detect endogenous 
AMPs [71]. In a peptidomic survey of endogenous peptides an 
unusual intramolecular disulfide-linked 22-residue amidated peptide 
was identified [72]. This peptide, named AMP-IBP5 (antimicrobial 
peptide derived from insulin-like growth factor-binding protein 5), 
showed antimicrobial activity against several microorganisms tested 
at lower concentrations. Another practical application of this idea on 
AMP selection was applied by Sasaki et al. [73], using electron transfer 
dissociation (ETD) technology as well as collision-induced dissociation 
(CID), to identify endogenous peptides derived from secretory granules 
of a human endocrine cellular line. ETD provided more widespread 
fragmentation, leading to the identification of peptides that are not 
touched by CID. Among such extra peptides, a novel AMP from the 
neurosecretory protein VGF was identified, demonstrating once more 
the importance of different and integrated techniques. 

Conclusive Remarks and Prospects
Nowadays, proteomic tools have accomplished noteworthy 

progress in the characterization of proteins involved in mechanisms of 
bacterial resistance as well as in the discovery of AMPs. On both sides, 
proteomics have been an amazing tool providing reliable contributions. 
However, the approach focused here is just at its beginning, since 
there are too many problems to be solved in order to provide a real 
contribution on drug development for combating infectious diseases. 

On the bacterial resistance side, each antibiotic has a distinct 
protein expression profile, which clearly makes it difficult to construct 
a single database of proteins involved in the resistance process. At 
this point it is extremely difficult to choose an ultimate technique that 
could riddle the bacterial resistance. Every technique presents their 
benefits and pitfalls. For example 2DE are extremely important for 
protein panorama visualization, including the comparisons between 
protein patterns. Nevertheless this technique show limited resolution 
of proteins and peptides at lower concentrations. This limitation could 
be solved by LC-MS and quantitative label free techniques, which 
are able to improve the detection of such proteins. Nor can all such 
modifications be easily detected by proteomic techniques, due to 
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technical limitations that may be solved by using more sensitive MS 
techniques, such as Nano-UPLC, as well in combination with novel 
pyro-sequencing techniques applied to genomics and transcriptomics 
[74]. The current capability of ultra-sequencing associated with novel 
proteomic techniques may help to attain a deeper understanding of the 
molecular resistance mechanism, leading to novel targets that could be 
used for discovering unusual compounds from chemical libraries. 

On the other side, the discovery of AMPs by proteomics tools has 
been a real challenge. Until now only a few samples have really explored, 
and many of them have focused on secretions such as venoms or 
amphibian skins due to the sample properties [63,66]. Although some 
initial trials have been performed with more astringent tissues such as 
flowers [14], any success has so far been obtained by using proteomics 
techniques. There are still thousands of organisms to be explored, 
including marine organisms, extremophiles and several others that 
showed the ability to produce AMPs by conventional technologies; 
for them, proteomics techniques must be improved and they must be 
integrated with transcriptomics techniques [75,76]. Although tandem 
mass spectrometry (MS/MS) combined with bioinformatics tools has 
permitted rapid and systematic protein identification based on peptide-
to-spectrum matches, it has been an enormous task to obtain accurate 
identification of endogenous peptides, such as peptide hormones, 
neuropeptides, peptide pheromones and AMPs. Since these peptides 
are processed at sites that are problematic to predict reliably, the pursuit 
of their MS/MS spectra in sequence databanks needs to be performed 
without proteinase setting. Furthermore, many endogenous peptides 
have various post-translational modifications, making it essential to 
take these into account in database exploration. In order to fill those 
gaps, a novel MS/MS spectrum search tool has been developed for highly 
accurate identification of endogenous peptides by merging two diverse 
fragmentation approaches, including collision-induced dissociation 
and electron transfer dissociation, being very effective in discriminating 
correct peptide identifications from false hits [77]. At the moment this 
method is being applied to elucidating neuropeptides extracted from 
mouse pituitary tumor cells, but searching for AMPs by these methods 
seems to be a promising direction. 

Different surfactants have also been explored in order to improve 
peptide ionization, which can be a real challenge in complex mixtures 
[78], and in the near future this may be applied to AMP selection. 
Additionally, for easy AMP detection the primary structures of such 
compounds must be better understood [54,56]. On this specific point 
more knowledge is needed, since several AMPs are quite promiscuous, 
being able to act in different ways under different conditions but with 
almost identical sequences [79]. This specific property could make it 
difficult to predict the function by proteomics, although MS techniques 
have been applied as a reliable and effective method for high-throughput 
AMP screening [13], and more studies must be performed in order to 
clarify structure-functional relations. 

In summary, in spite of enormous efforts, we are just starting to 
understand bacterial resistance and AMP development by using 
proteomics, and great advances can be expected over the next years 
in this field. Those studies will soon be vital to control lethal bacterial 
pathogens and decrease the severe damage produced.
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