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Abstract
A Multiple Model Adaptive Estimation (MMAE) based approach of fault diagnosis for Li-Ion battery is illustrated 

in this paper. Electrochemical modelling approach is integrated with MMAE for fault diagnosis. This real physics 
based model of Li-ion battery (with Li-Co-O2 cathode chemistry) with nominal model parameters is considered as 
the healthy battery model. Battery fault conditions such as aging, overcharge and over discharge causes significant 
variations of parameters from nominal values and can be considered as separate models. Output error injection 
based Partial Differential Algebraic Equation (PDAE) observers are used to generate the residual voltage signals. 
These residuals are then used in MMAE algorithm to detect the ongoing fault conditions of the battery. Simulation 
results show that the fault conditions can be detected and identified accurately which indicates the effectiveness of 
the proposed battery fault detection method.
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Nomenclature

ec  : Lithium ion concentration in the electrolyte phase.

sc  : Lithium ion concentration in the active materials in both 
electrodes.

s,ic  : Volume-averaged concentration of a single particle.

eD  : Diffusivity at electrolyte phase.

sD  : Diffusivity at solid phase.

ac
f  Mean molar activity coefficient

F  : Faraday constant.

ei  : Current in the electrolyte phase.

0i  : Exchange current density.

I  : Load current.

nj  : Molar ion fluxes between the active materials in electrodes
and the electrolyte.

−L  : Length of negative electrode.
+L  : Length of positive electrode.

n  : Number of active materials.

R  : Universal gas constant.

pR  : Radius of the spherical particles.

0
ct  : Transference number.

T  : Average internal temperature.

U  : Open circuit potential.

 V  : Cell voltage.

aα  : Charge transfer coefficient in anode.

cα  : Charge transfer coefficient in cathode.

γ  : Observer gain constant.

eϕ  : Potential at electrolyte phase.

sφ  : Potential at solid phase.

eε  : Volume fraction at electrolyte phase.

 sε  : Volume fraction at solid phase.

η  : Over-potential for the reactions.
avgρ  : Average density.

κ  : Rate constant for the electrochemical reaction. 

Introduction
Amongst all the secondary (alternative) energy sources available for 

various applications such as Plug-In Hybrid Electric Vehicle (PHEV), 
Hybrid Electric Vehicle (HEV), Electric Vehicle (EV) and portable 
electronic devices such as smartphone and laptops, lithium-ion (Li-
ion) battery is considered to be the most promising [1]. Compared to 
the other alternative options for energy sources (such as Nickel-metal 
hydride and Lithium iron phosphate etc.) lithium-ion batteries have 
some unique advantages including: these batteries have higher specific 
energy, have minimum memory effect, provide best energy- to-weight 
ratio, and have low self-discharge when idle [2,3]. Based on these stated 
advantages, Li-ion batteries is the leading candidate for the upcoming 
generation of aerospace, automotive, and other applications.

PHEV, EV and HEV have been gaining more acceptances in 
recent years due to their low emissions and better fuel efficiency 
[4]. Performance of these transportation options are significantly 
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Remaining Useful Life (RUL) of Li Ion battery is based on data-driven 
methods. In [10], the data-driven method is presented on the diagnosis 
and prognosis of the battery health in an alternative powertrain. For 
estimation purposes, the authors used a Support Vector Machine 
(SVM) type machine learning technique. A similar methodology is 
adopted a conditional three-parameter capacity degradation model 
in [11]. Kozlowski [12] presented a battery parameter identification, 
estimation and prognosis methodology presented using several 
techniques, e.g. Neural Network (NN), Auto Regressive Moving 
Average (ARMA), Fuzzy Logic (FL) and Impedance Spectroscopy (IS) 
etc. Since the data- driven method is based on the relationship between 
input and output, the real physics of the battery model is ignored in this 
approach as is in ECM.

Multiple Model Adaptive Estimation (MMAE) is used in this 
work to detect the faults in a Li-ion battery. This adaptive estimation 
method requires representation of different fault scenarios, generate 
the residual signals and then to isolate the faults of different kinds using 
the algorithm. The generation of residuals and evaluation of them plays 
a vital role on the performance of the diagnosis [13]. In this work, the 
residuals are generated by comparing the simulated outputs of the fault 
models with the simulated output of the true plant model.

The work presented here aims at detecting several faults, i.e. 
aging, Over-Discharge (OD), and Over- Charge (OC) along with the 
detection of the healthy model. Among the stated fault scenarios in a 
Li-ion battery, OD and OC are critical for maintaining the health of 
the battery. While over-charging can lead to overheating that can lead 
to the vaporization of active material and explosion, over-discharge 
can short circuit the battery cell [14]. However, if these faults can be 
detected quickly according to the described methodology, steps can 
be taken to solve the issues before the faults can go to their extreme 
conditions.

This paper is organized as follows. Section 3 illustrates the 
battery electrochemical model used in this work. It is followed by the 
presentation of the reduced order model and PDAE observer equations. 
Section 5 describes the multiple model adaptive estimation technique. 
Section 6 discusses fault diagnosis method used in this work. Finally 
the findings are summarized in the conclusion section.

Electrochemical Battery Model
The electrochemical battery model captures the spatiotemporal 

dynamics of li-ion concentration, electrode potential in each phase, and 
the Butler-Volmer kinetics which governs the intercalation reactions 
[15]. A schematic of the model is provided in Figure 1.

In the provided geometry, the model considers the dynamics of Li-
ion cell only in X -direction. Therefore, the model considered in this 
work is a 1- D spatial model where variations of the dynamics in Y and 
Z directions are assumed to be small. It is also assumed that Li-Ion 
particles are considered to be of spherical shapes with mean radius of 
Rp situated along X-axis [15].

In Figure 1, the main regions of the li-ion battery model are shown. 
The entire spatial length is divided into three regions, namely, 
negative electrode (ranges from −0  to −L ), separator (ranges 
from −L  to +L ) and the positive electrode (ranges from +L  to 

+L ). Two electrodes are separated by the thin and porous separator 
region through which only lithium ions ( +Li ) can pass, i.e. the 
electrons must flow through the circuit outside the battery [16].

The governing equations of the electrochemical model of the Li-ion 

dependent on the electrochemical energy sources e.g. installed battery 
modules integrated with the vehicle powertrain. Depending on the 
user driving habit and the road conditions, battery undergoes through 
different operating conditions as the battery load demand changes. The 
safe operation of the entire battery module is always expected, as it is 
one of the most vital components of the stated vehicle configurations. 
But in reality, it is not always possible to maintain the desired safe and 
healthy operating conditions of the battery system for a number of 
reasons. For instance, battery can be overcharged during operation, 
can be over-discharged at different rates. Moreover, battery aging is 
another potential situation due to long time cycling of the battery.

For HEV, the on board Battery Management System (BMS) 
is responsible for managing the rechargeable battery system by 
monitoring its state of operation, protecting the battery from unsafe 
operating zone, and reporting the diagnostic data to the operator while 
managing the battery operation. To ensure the optimal operation of Li-
Ion battery without sacrificing the stated advantageous features, fault 
condition monitoring is of critical importance. These fault conditions 
can cause serious negative impact on the battery operation and life if 
they are not detected and managed quickly.

Based on the usage of the battery and type of operations involved, 
a number of Fault Detection and Diagnosis (FDD) methodologies have 
been developed. All the model based FDD techniques make use of 
two major types of model, namely the equivalent circuit based models 
and true physics based models. In equivalent circuit based models, 
the battery is modelled by assuming that the true behaviour of the 
battery is attainable using a combination of voltage source, capacitors, 
resistors, and Warburg impedances. The circuit parameters of the 
stated components are experimentally determined, in which the insight 
into the real physics of the battery is ignored. This approach does not 
deal with the real dynamics of the battery chemistry.

On the other hand, the real physics based models, such as the 
one presented by Doyle, Fuller, and Newman [5] are primarily based 
on partial differential equations which contains all the required 
information regarding the true battery chemistry. This electrochemical 
model is based on the concentrated solution theory [6]. However this 
model is too complex to be used in a real time application. Model 
reduction via realistic simplifying assumption is used to overcome 
this issue. The work presented in this paper is based on the reduced 
order partial differential equation [1], representing the electrochemical 
battery model.

A large body of work exists that aims at the fault detection and 
diagnosis of rechargeable batteries. Adaptive estimation technique has 
been used in [7], which is based on equivalent circuit model. Extended 
Kalman Filter (EKF) was utilized to estimate the state variables of 
the non- linear battery model that was used in this paper. EKF is 
based on an approximation of Taylor series, which cannot deal with 
highly non-linear systems. Another shortcoming of this work is that, 
it did not consider one of the major variables in the battery system, 
i.e. temperature. An Adaptive Recurrent Neural Network (ARNN) 
for prediction of remaining useful life (RUL) was used in [8], which 
is also modelled based on equivalent circuits. Synthesized design of 
Luenberger Observer (LO) was adopted in [9], along with equivalent 
circuit model for fault isolation and estimation. The used observer 
works well with minimum or no measurement noise in the system. But 
this methodology does not perform well when significant measurement 
nose is present in the system.

Other major studies related to State of Health (SOH) and 
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battery are given by the following set of Partial Differential Algebraic 
Equations (PDAE) [1,3,5,6,15,17,18]:
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Here ( )0,ii x,t  is the exchange current density and ),( txiη  is 
the over-potential for the reactions, equations of which are [1]:

a max( ) ( ) ( ( )) ( )α α α= − c Cs,i0,i eff,i e ss,i ss,ii x,t r c x,t c c x,t c x,t    (7)

( ) ( ) ( ) ( ( )) ( )η φ φ= − − −i s e ss,i f,i n,ix,t x,t x,t U c x,t FR j x,t             (8)

Here ( )ss,ic x,t is the thi  concentration at solid phase evaluated 

at ( ( ))p,i ss,ir = R U c x,t is the open circuit Potential of the thi  

active material in the solid phase and 
max

,isc is the maximum possible 

concentration in the solid phase of the thi  active material and this is 
a constant.

The cell temperature is considered to be lumped and was modeled 
based on the following equation [1]:
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Here, ),(, txc is is the volume-averaged concentration of a single 
particle, which is again defined as:
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In the above equations eε , is ,ε ,σ , R , p,iR , F , aα ,αc , pc ,

ρ avg , cellh , and 
0

ct are all constant parameters while κ , 
c a

f and 

eD  are dependent on electrolyte concentration and temperature and 

ieffr , , s,iD  and fR are Arrhenius-like parameters which follows the 

equation [1]:
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The open circuit potential for the positive electrode (cathode) is 
given by the following empirical equation [19]:
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from 0 to 1.

Similarly, the open circuit potential for the negative electrode 
(anode) is given by [19]:    
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Where, 
max,,

,

ns

ns
p c

c=θ is also a dimensionless number 

ranges from 0 to 1.

Output voltage of the battery model is then given by [1],

s s( ) ( ) ( , )φ φ −= −+V t 0 ,t 0 t

Model Reduction and PDAE Observer Equations
Due to the complexity of the stated PDAE model, the electrochemical 

model is reduced based on a few simplifying assumptions [1]. The 
intention of reduction is to build a model from the simulation point 
of view while maintaining the ability to capture all the cell dynamics 
[1]. The key assumption made here is that the electrolyte concentration 
is constant, i.e. ),( txce  = ec  [1]. Another assumption is the 
introduction of an approximate solution of the diffusion equations in 
the solid active materials in each electrode as presented in [20]. Using 
these two assumptions, the reduced order PDAE equations can be 
presented as follows [1]:
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Figure 1: Schematic of Li-ion battery geometry.
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Boundary conditions for the above reduced order model are given 
by:
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The output equation for this reduced order model remains the 

same as previously mentioned, i.e.
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In PDAE observer equations, a feedback of error between the 
measured outputs and the calculated outputs [1] was introduced. This 
feedback was maintained in such a way that all the variables being 
estimated converges to their true values [17]. The PDAE observer gain 
are linear corrective terms via output injection only for the volume 
averaged concentrations in the individual electrodes and the internal 
average temperature [1]. The gain values were determined by trial and 
error method during the simulation for which the error value is the 
minimum one.

The PDAE observer equations are the followings:
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The output equation of the observer is:
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The equation of the observer gain in the two electrodes are given by
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Where n, denotes number of active materials which is assumed 
one in this works. One important point to be noted in case of PDAE 
observer is that, the temperature was assumed to be constant at room 
temperature, i.e. 298.15K. Therefore, even though the temperature 
equation is provided in battery modeling part, the observer gain for 
temperature is not considered for this work, i.e. 0γ =T .

Multiple Model Adaptive Estimation (MMAE) 
Technique

This adaptive estimation technique which is a special type of fault 
detection method is adopted in this work with the electrochemical 
model of Li-ion battery. In this estimation (MMAE) technique [7, 21-
25], as shown in Figure 2, various models run simultaneously while 
all the models are excited by a same input signal. MMAE in our work 
uses PDAE observer outputs of different models (coming from due to 
parameter variations). If there are total “n” models, there will be (n-1) 
outputs represents the faults or unhealthy scenarios [7], the remaining 
one is the actual plant model.

The distinguishing feature of MMAE technique is that, it provides 
a scope of fault detection based on possible fault scenarios along with 
the actual model. Main advantage of using MMAE as compared with 
other possible ways of fault detection (fuzzy logic, SVM etc.) is that, it 
provides a probabilistic approach of condition monitoring [7] based 
on the differences of outputs between the actual model and all other 
individual fault models which is more reliable in case of fault detection.
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The conditional probabilities require a priori samples to compute 

the current values and are normalized over a complete sum of 
conditional probabilities of all systems. The probability for the nth 
model at time sample is given by [7,23,25,26]:

( ) ( ) ( | , ) ( )

( | ) ( )

−
=

−∑
z k |a,z k -1 k n k -1 n

n,k j=n

z(k)|a,z(k -1) k j k -1 j
j=1

f z a z p k 1
p

f z a ,z p k 1

Where, ( | ) ( )−z(k)|a,z(k -1) k n k -1 nf z a ,z p k 1  is the 

conditional probability density function of the thn  model considering 
the history of the measurements.

The conditional probability function is expressed as [23,25,26]:
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Where, l  is the measurement dimension and equal to 1 and then: 

( ) 1
, , ,

1
2
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Where, knr ,  is the residual signal for the thn  model at time sample 
k . When the output of any of the available models matches with the 
output of the actual model which simultaneously make the mean value 
of that residual signal to zero and the covariance of that particular 
signal is given by [23,25,26]:

RCPC T
knkknknkn += ,|,,,ψ

Where n,kC  is the output vector for thn system at any time sample

k . Moreover, kknP |,  represents the state covariance matrix while R  
is covariance matrix of measurement noise.

System Identification Toolbox in MATLAB was used to have 
matrices for all the scenarios. Using all possible residuals the conditional 
probabilities are evaluated. The largest conditional probability among 
all may be used as an indication of ongoing fault condition related to 
the involved specific residual [7].

Fault Diagnosis
Among all the electrochemical model parameters of the battery 

dynamics, there are some parameters which depend on the battery 
physics and on the other hand another type of parameters exist, which 
depend on the chemistry of the battery. Stated two types of parameters 
are adopted in this fault diagnosis work. In addition to these two type 
of parameters, there are some parameters, which were adopted from 
the manufacturer provided values.

Faults of the battery arises mainly due to the variation in some of 
the parameters in the battery electrochemical model. These variation 
differs from one possible model of the battery to others.

The parameters which are common to all possible scenarios of the 
battery, i.e. general parameters are provide in Table 1 [27]. Apart from 
these general parameters, the model specific parameters, which yields 
different possible battery operating scenarios are provided in Table 2 
[27]. For the fault diagnosis purpose, the input current to the battery 
possible models is the scaled battery output current from a HEV 
simulation using a plug-n-play vehicle simulator, Autonomie [28], 
developed by Argonne National Laboratory.

For this purpose, a portion of the UDDS cycle simulated battery 
output current profile is provided in Figure 3. Considering this current 
profile as input to the electrochemical model, all four of the battery 
models were simulated and the PDAE observer was used to observe the 
same output. In this work, voltage is the only state under consideration. 
In this work, the tuned value of observer gain is 353 10 .γ −= ×

For healthy battery, the simulated and the observed voltage 
responses of the battery is provided in Figure 4. Similarly, the voltage 
comparison for the aged battery is provided in Figure 5. For Over-
discharged battery, the voltage comparison is provided in Figure 6. In 

Figure 2: MMAE algorithm skeleton.

Input, i.e. IL
Output, i.e. VLi-ion battery plant

model

PDAE observer #1,

PDAE observer #2,

PDAE observer #3,

PDAE observer # n, Conditional
probability density

evaluator

p1p2p3

pn

Normal operation

Overcharge

Over discharge

(n – 1)th fault case

t

Symbol Unit Cathode Separator Anode
σi S/m 100 100

€ f, i 0.025 0.0326
€i 0.385 0.724 0.485

C s, i, max mol/m3 51554 30555
C s,i,0 mol/m3 0.4955 × 51554 0.8551 × 30555
C0 mol/m3 1000
C0 m 2 ×10  -6    2 ×10   -6

Li m 80 ×10  -6 25 × 10    -6 88 ×10   -6

R SEI Ωm2 0 0 0
F C/mol 96487 96487 96487
R J/(mol K) 8.314 8.314 8.314
T K 298.15 298.15 298.15

Table 1: Electrochemical model parameters for licoo2 cathode chemistry.

Parameter Healthy Aged OD OC
D n (m

2/s) 3.9 ×10  -14 4.875 ×10  -15 7.8 ×10  -15 4.875 ×10 -15

D p (m
2/s) 1.0 ×10  -14 1.5 ×10  -14 5.0 ×10  -15 5.0 ×10  -15

K n (mol/(sm2)/ (mol/ m3) 5.0307 ×10  -11 6.288410 -12 1.0061×10 -11 8.38 ×10  -12

K n (mol/(sm2)/ (mol/ m3) 2.334 ×10  -11 2.334 ×10  -11 1.17×10  -11 1.17 ×10 -11

Table 2: Model Specific Parameters.
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addition to those three models, for over-charged battery, the voltage 
comparison is provided in Figure 7. If the MMAE algorithm is observed 
carefully, it is clear that, the decision on the occurring faults are taken 
using the residual voltage signals. To have the residuals, a plant model 
voltage profile is taken as the reference, which is build following the 
following procedure shown in Figure 8.

Among 50 sec of battery operation, first 10 sec and last 5 sec is 
dominated by the healthy battery operation, after the first 10 sec of 
operation, next 15 sec is dominated by the aged battery chemistry, next 
10 sec is dominated by OD battery operation and next 10 sec is from 
OC battery operation.

Using the above sequence of operations, the built plant model 
voltage profile is provided in Figure 8.

After comparing the PDAE observer voltage responses with this 
plant voltage profile, respective model voltage residuals are generated, 
which are used in fault diagnosis, i.e. used in conditional probability 
generation equation. Voltage residual for heathy battery operation 

during the overall operation of the battery is provided in Figure 9. 
Similarly, the voltage residual for the aged battery is provided in 
Figure 10. Voltage residual for the over-discharged battery is provided 
in Figure 11. Finally, the voltage residual for over-charged battery is 
provided in Figure 12.

To have the covariance of the particular signal updated state 
covariance matrix, is the significant one along with the measurement 
noise covariance matrix, . Using the system identification toolbox in 
MATLAB was used to generate the discrete time state space model 
using the UDDS current signal as input and respective model voltage 
as output and taking 0.001s as sample time. Having the discrete time 
state-space model, using the Kalman-gain generation loop, the updated 
state covariance matrices are generated for all four models. 

Initialized values of the state covariance matrices are taken as the 
identity matrix of order two, i.e.
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Figure 3: UDDS cycle simulated battery current output.
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Figure 4: Voltage comparison for healthy battery.
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Figure 5: Voltage comparison for aged battery.
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Figure 6: Voltage comparison for an OD battery.
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Figure 7: Voltage comparison for an OC battery.
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Figure 8: Plant model voltage profile.
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Figure 9: Voltage residual for healthy battery.
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Figure 10: Voltage residual for aged battery.
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Figure 11: Voltage residual for an OD battery.
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Figure 12: Voltage residual for an OC battery.
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After evaluating the Kalman-gain generation loop, the updated 
state covariance matrices are provided below:

13 10

10 11

6.85738472847 10 3.7634373647549454 10
4.74545734342 10 1.9233546034343435 10

− −

− −

 × − ×
=  − × × 

1P

15 12

12 10

3.272637236726353 10 9.23323083485 10
7.81213343535646 10 8.924838573761 10

− −

− −

 × − ×
=  − × × 

2P

13 10

10 11

7.93545768743434 10 2.254576861212 10
2.3435687873232 10 1.5788096454232 10

− −

− −

 × − ×
=  − × × 

1P

13 10

10 10

6.34455668900676 10 3.3445576670 10
2.2446687542323 10 5.93435687889 10

− −

− −

 × − ×
=  − × × 

1P

Adopting the updated state covariance matrices, probabilities were 
obtained for different values of measurement covariance matrices, R. 

If the voltage residuals are observed, it is clear that, the maximum 
value of the residual is of the order of 10-3. Therefore, the values of R 
cannot exceed the maximum value of the residual. Hence, for different 
values of R, lower than the maximum residual values, the probabilities 
are obtained.

For 51 10−= ×R the obtained probabilities for the fault diagnosis 
is provided in Figure 13.

This fault diagnosis is not the exact one to be used in the BMS. 
Therefore, value of was changed to and the obtained probabilities for 
this is provided in Figure 14.

Conclusion
Fault diagnosis of Li-Ion battery was implemented for a real time 

operation mode for HEV. An effective fault diagnosis technique, 
multiple model adaptive estimation (MMAE) was implemented for 
some crucial operation mode of Li-Ion battery. Some possible abusive 
operating conditions, i.e. over-discharged, over-charged and aged 
mode of operation was adopted along with the healthy operation of 
Li-Ion battery. The obtained probability of faults was correct enough 
to use in real time BMS of a HEV. Obtained results of fault diagnosis is 
based on the electrochemical model of the battery dynamics, therefore, 

the obtained fault diagnosis is more reliable and it can be thought for a 
potential real time application for HEV battery, where the BMS would 
be a reliable one because of the adopted fault diagnosis technique.
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