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Abstract
Background: Alcoholism is often accompanied by depression. It has been shown that deep electrical stimulation 

of the nucleus accumbens is effective in the treatment of alcoholism. 

Objective: Despite the promising results of clinical trials, the mechanisms underlying its effects are still unclear. 
To elucidate these mechanisms, valid animal models are needed. 

Methods: We investigated the effects of electrical stimulation of the nucleus accumbens shell (NAS) and nucleus 
accumbens core (NAC) on alcohol intake in bulbectomized rats. Bilateral removal of the olfactory bulbs (OBX) is 
considered a valid animal model of depression.

Results: It was shown that electrical stimulation of the NAS with the described stimulus parameters significantly 
reduced voluntary ethanol intake in OBX rats. After the cessation of stimulation, this effect became insignificant. In 
contrast, stimulation of the NAC did not modify voluntary ethanol intake. In sham-bulbectomized animals, voluntary 
ethanol intake was negligible and ethanol consumption did not alter as a result of electrical stimulation of the NAC 
or NAS 

Conclusions: Our study underlines the relevance of the OBX model in the study of depression comorbid alcohol 
intake. Moreover, it might be useful in the study of the mechanisms underlying the clinical effectiveness of electrical 
stimulation of the NAS in the treatment of alcoholism.
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Introduction
Alcohol dependence is a chronic disease which is characterized by 

physical and psychological addiction to alcohol. It is associated with 
a wide range of harmful physical, mental, and social problems. The 
pharmacological treatment of alcoholism remains a major challenge. 
The aims of pharmacological strategies are to treat the symptoms of 
alcohol withdrawal, reduce the consumption of and craving for alcohol, 
prevent relapse and treat associated psychiatric problems [1].

A number of neurotransmitters and neuromodulators are reportedly 
involved in the manifestation of alcoholism. Moreover, chronic 
alcohol intake induces plastic adaptive morphological changes within 
the central nervous system, leading to altered motivational, affective, 
and cognitive behavior [2,3]. With special regard to plastic-adaptive 
neuromorphological alterations, neuromodulation techniques such 
as noninvasive transcranial magnetic stimulation, transcranial direct 
current stimulation, and more invasive techniques such as deep brain 
stimulation (DBS) appear to offer hope for the treatment of alcoholism. 
DBS seems to be a therapeutic option for those patients suffering from 
severe alcohol dependence for whom other treatment options have 
failed [4-9]. Moreover, in preclinical and clinical investigations the 
therapeutical effectiveness of DBS in the treatment of depression was 
shown [10-14]. The mechanisms underlying its therapeutic usefulness 
on a cellular and circuit level are far from being understood. Thus more 
research – including animal experiments-is needed to elucidate the 
mechanisms underlying the effectiveness of DBS.

Alcoholism is influenced by genetic, psychological, and cultural 

factors. This heterogeneous nature of alcoholism might explain 
why the efficacy of recent treatment approaches has been modest at 
best [15,16]. Much effort is spent optimizing recent approaches and 
discovering the mechanisms underlying approaches in clinical use such 
as DBS, based on animal experiments. However, rodents have a natural 
aversion to alcohol [17]. Therefore, in DBS studies genetically selected 
alcohol-preferring rats [16,18] or a saccharin-fading procedure [14] 
were used. Clinical observation revealed a comorbidity of depression 
and alcoholism [19-21]. After removal of the olfactory bulbs-which is a 
validated model in depression research-elevated alcohol consumption 
was found [22]. Therefore, we used OBX rats to investigate the effect of 
DBS of the NAC and NAS on voluntary depression comorbid ethanol 
consumption.

In alcohol-preferring rats, DBS in the nucleus accumbens (NA) 
reduced alcohol preference [18]. This shows that DBS is effective in 
both humans and animals, and provides a reliable basis for further 
studies aimed at discovering the mechanisms underlying the effects of 
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DBS. This is all the more interesting in the case of comorbid psychiatric 
diseases and addiction. Alcoholism is often accompanied by depression, 
and may contribute to the etiology of depression and vice versa [19-21]. 

Bilateral removal of the olfactorial bulbs (OBX) is an accepted 
and validated animal model in experimental depression research [23-
31]. Six weeks after surgery, animals exhibit typical depression-like 
behavior such as reduced grooming behavior, anhedonia, alterations in 
nociception, and a deficit in learning performance. These depression-
like symptoms are responsive to treatment with different antidepressant 
drugs [19,24,31] and vagus nerve stimulation [32], thus demonstrating 
the predictive validity of this model. In bulbectomized mice, an 
elevated increase in voluntary ethanol consumption was found [22]. 
This suggests that OBX might also be a useful model for investigating 
alcohol abuse disorders and therapeutic options such as DBS with the 
aim of optimizing neuromodulation techniques as well as investigate 
the mechanism underlying their effectiveness.

The NA is a region of the brain which is crucially involved in 
functions such as motivation, reward, and drug addiction [33]. 
Therefore, the NA seems to be a relevant target in the treatment of 
alcoholism. It can be divided into two substructures, i.e. the nucleus 
accumbens core (NAC) and the nucleus accumbens shell (NAS). These 
substructures have different morphologies and functions in terms of 
behavior and addiction [34]. In the present study, we investigated the 
effect of DBS of the NAC and NAS on depression comorbid voluntary 
ethanol consumption in OBX rats to test the hypothesis whether this 
attempt is suitable for the elucidation of the comprehensive neuronal 
network underlying DBS effects in ethanol consumption. Voluntary 
consumption presents a useful model for investigating natural patterns 
of consumption and their underlying neurochemical or behavioral 
mechanisms [35].

Materials and Methods
The work reported here was conducted in accordance with EC 

regulations and those of the National Act on the Use of Experimental 
Animals (Germany). The protocol was approved by the Saxony-Anhalt 
Committee on Animal Care.

Animals

The animals used were male Wistar rats (RjHan:WI, Janvier, St. 
Berthevin, France). The rats were kept under controlled laboratory 
conditions with a light/dark cycle of 12:12 (lights on at 6 a.m.), 
temperature 20 ± 2°C, and air humidity 55 - 60%. The animals were fed 
with commercial rat pellets (ssniff R/M-H, ssniff Spezialdiäten GmbH, 
Soest, Germany) and tap water ad libitum. The animals were housed in 
groups of 5 in Macrolon IV cages. Studies on voluntary ethanol intake 
in adult Wistar rats report varying intake of around 1-4 g/kg/day using 
continuous access models [36,37]. OBX or sham surgery (OBS) was 
performed on 8-week-old rats. 

Olfactory bulbectomy

Bilateral olfactory bulbectomy (OBX) was performed as described 
by O’Connor and Leonard [38]. Briefly, rats were deeply anesthetized 
with sodium pentobarbital (40 mg/kg body weight, intraperitoneally 
i.p., injection volume 10 ml/kg body weight) and a midline skin 
incision was made to expose the skull overlying the bulbs. Two holes 
(diameter 2 mm) were drilled above the bulbs (6.5 mm anterior to the 
bregma, 2 mm laterally on both sides of the midline). The olfactory 
bulbs were cut and removed by aspiration using a deflected pipette. The 
resulting space was filled with hemostatic sponges (Gelitaspon®, Gelida 

Medical, Amsterdam, The Netherlands), and the skin was closed with 
tissue adhesive (Histoacryl®, B. Braun Aesculap, Tuttlingen, Germany). 
Sham-operated rats (OBS) were treated in the same manner, including 
piercing of the dura, but the bulbs were left intact.

Voluntary ethanol consumption

Five weeks after OBX or OBS, the animals were housed singly in 
Macrolon III cages which were equipped with 3 bottles, and were given 
access to tap water, 5% ethanol, and 10% ethanol solution respectively. 
Individual fluid intake was calculated based on bottle weight measured 
twice a week. Total fluid intake was defined as water intake + ethanol 
solution intake and total ethanol intake was defined as 5% + 10% 
ethanol solution intake or as absolute ethanol intake. These measures 
were expressed as g/kg body weight. The position of the bottles was 
changed at weighing. Ethanol and water intake were measured over 
a period of 5 weeks. The cages were located together in racks so that 
auditory and olfactory contact was maintained.

Electrode implantation

OBX rats showing stable ethanol intake after a period of 5 weeks 
and OBS rats received 40 mg/kg body weight sodium pentobarbital i.p. 
as anesthesia. After the induction of anesthesia, rats were placed into 
a stereotactic apparatus (Stoelting, Wood Dale, USA). Two bipolar 
stainless steel electrodes were then implanted into either the NAS 
(1.6 mm anterior to bregma, 0.9 mm lateral to the midline, and 7.5 
mm ventral to the surface of the skull) or the NAC (2.2 mm anterior 
to bregma, 0.9 mm lateral to the midline, and 7.0 mm ventral to the 
surface of the skull) of the NA according to Paxinos and Watson [39] 
and modified according to Lopez [40]. Electrodes were affixed to the 
skull using dental cement (Paladur, Heraeus Kulzer, Hanau, Germany). 
Electrode placement is illustrated in Figure 1.

Deep brain stimulation

After a 1-week period for convalescence, the rats received 3 h 
per day DBS (biphasic rectangular pulses with a phase duration of 
0.06 ms delivered at 130 Hz in trains of 1 min duration and with a 
1 min intertrain interval), using a 2100 Isolated Pulse Stimulator 
(A-M systems Inc., Carlsborg, USA). The current was adapted to the 
individual sensitivity of the animals. Stimulation began with 50 µA. If 
there were no signs of vibrissae erection, eye blinking, or head twitching, 
the current was increased in steps of 10 µA up to a maximum current 

Figure 1: A diagram depicting a coronal section of the rat brain showing 
electrode placements in the nucleus accumbens shell (NAS) and nucleus 
accumbens core (NAS).
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of 70 µA. Sham-stimulated animals were connected to the stimulator 
but did not receive current. The stimulation period lasted for 3 weeks, 
during which voluntary ethanol intake was quantified as described.

Post-stimulation voluntary ethanol intake

Following the stimulation period, voluntary ethanol intake was 
quantified for another 2-week period to investigate the persistence of a 
possible DBS effect.

Verification of olfactory bulbectomy and electrode placements

Following the completion of all experiments, the animals were 
anesthetized with sodium pentobarbital (40 mg/kg) and decapitated. 
Prior to removing the brain from the cranium, macroscopic inspection 
was used to confirm that the olfactory bulbectomy had been carried out 
correctly. The brain was frozen in methyl butane on dry ice, and coronal 
sections (60 μm) were taken at the level of the NA using a Cryocut 
(Leica CM 3050, Leica Microsystems, Nussloch, Germany). After Nissl 
staining, the correct placement of the electrode was microscopically 
verified. Animals with incomplete olfactory bulbectomy, electrode 
placements outside of the areas of interest, or with excessive mechanical 
damage, were excluded from the subsequent data analysis.

Statistics

Ethanol and total fluid intake were analyzed using the repeated 
measures ANOVA model with the within-subjects variable of time 
(pre-stimulation, stimulation, and post-stimulation period) and the 
between-subjects factor of groups (OBS, OBX-stimulated; OBS, OBX 

sham-stimulated) with SPSS Statistics, Version 21. A p < 0.05 was 
considered statistically significant.

Results
Stimulation in the nucleus accumbens shell (NAS)

The 4 experimental groups did not differ in total fluid intake 
(i.e. water + 5% ethanol solution + 10% ethanol solution) over the 
three periods of the experiment (pre-stimulation, stimulation, post-
stimulation, F = 1.22, df = 3, p = 0.31), Figure 2. The animals’ 5% and 
10% ethanol solution intake showed a high inter-individual variation. 
Therefore, statistical evaluation was based on total ethanol, i.e. absolute 
ethanol intake (Figure 3). Compared with OBS rats, in both groups of 
OBX rats the total ethanol intake was significantly enhanced (F = 21.51, 
df = 1, p< 0.001) but there was no difference between the groups to be 
stimulated and to be sham-stimulated (F = 1.96, df = 1, p = 0.17) in the 
pre-stimulation period. Electrical stimulation in the NAS had no effect 
on the ethanol intake of OBS animals. However, in OBX rats, ethanol 
intake was reduced significantly as a result of stimulation. This effect 
was not statistically detectable in the post-stimulation period (F = 3.41, 
df = 1, p = 0.08), (Figure 3). 

Stimulation in the nucleus accumbens core (NAC)

There was a significant difference in total fluid intake over the 
three periods of the experiment (F = 10.85, df = 3, p < 0.001), (Figure 
4). Total fluid intake was higher in the bulbectomized NAC group. 
In the pre-stimulation period, OBX rats had a higher ethanol intake 

Figure 2: Daily intake of 5% and 10% ethanol solution and total fluid intake in sham-bulbectomized (OBS) and bulbectomized (OBX) rats 5 weeks prior to bilateral 
implantation of bipolar electrodes in the nucleus accumbens shell, during the 3-week stimulation period (grey background), and 2 weeks after electrical stimulation 
(stim) or sham stimulation (sham). 14 - 20 animals per group.
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compared with OBS animals (F = 58.39, df = 1, p < 0.001). As found 
in the previous experiment, there was no difference between the OBX 
rats which were to be stimulated and those which were to be sham-
stimulated (F = 0.87,df = 1, p = 0.36), Figure 5. Stimulation of the NAC 
had no effect on ethanol consumption in the OBS (F = 0.013, df = 1, p 
= 0.91) or OBX rats (F = 2.2, df = 1, p = 0.11), (Figure 5).

Discussion
Our study shows that voluntary ethanol consumption is elevated 

in OBX rats. Electrical stimulation of the NAC with the described 
stimulus parameters did not modify ethanol intake in OBS and OBX 
rats. The experimental conditions surgery and electrical stimulation 
did not affect total fluid intake. This is the first study showing that 
stimulation of the NAS significantly reduced voluntary ethanol intake 
in OBX rats. After the cessation of stimulation, this effect became 
insignificant. These results support our hypothesis that DBS in OBX 
rats represents a useful tool to investigate the mechanisms underlying 
DBS effects in ethanol consumption.

OBX is an animal model which is characterised by a high predictive 
validity to investigate the possible biochemical or neurobiological 
mechanism(s) of depression, as well as the antidepressant-like property 
of test molecules [29]. Previously we have shown that rats showed 
depression-like behavior 5 weeks after OBX [28, 42, 45]. It is well-
known that handling can modify rodent behavior [41-44]. Therefore 
no additional experiments were included to avoid modifying effects on 
ethanol intake.

As shown in Figures 2-5, ethanol intake in OBS is low. The ethanol 
intake measured in the present experiments is in good accordance 
with data obtained in previous experiments [45]. Therefore we can 
only conclude that DBS of the NAC and NAS with the parameters 
used in the present experiment did not increase voluntary ethanol 
consumption in the rats.

Figure 3: Total ethanol intake (absolute ethanol, g/kg body weight) in sham-
bulbectomized (OBS) and bulbectomized (OBX) rats 5 weeks prior to bilateral 
implantation of the bipolar electrode in the nucleus accumbens shell, during 
the 3-week stimulation period (grey background), and 2 weeks after electrical 
stimulation (stim) or sham stimulation (sham). * p <0.05 OBS vs. OBX, + p < 
0.05 OBX/sham vs. OBX stim

Figure 4: Daily intake of 5% and 10% ethanol solution and total fluid intake in sham-bulbectomized (OBS) and bulbectomized (OBX) rats 5 weeks prior to 
bilateral implantation of the bipolar electrode in the nucleus accumbens core, during the 3-week stimulation period (grey background), and 2 weeks after electrical 
stimulation (stim) or sham stimulation (sham).11 - 14 animals were used per group
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Before interpreting the results, one should consider the technical 
limitations of our study, because the alcohol preference did vary. Our 
intention was to evaluate preference based on ethanol concentration. 
Interestingly, inter-individual variation was very high. As can be seen 
in the Figures, the animals differed in the daily voluntary consumption 
of ethanol. Although ethanol intake did gradually increase in the OBX 
groups, some animals preferred 5% ethanol, others preferred 10% 
ethanol, and some rats switched between the two concentrations. 
Therefore, we focused on total ethanol, i.e. absolute ethanol 
consumption. However, total ethanol consumption differed between 
the NAC and the NAS experiments. Since these experiments could 
not be carried out in parallel, we speculate that circannual rhythms 
contributed to the difference in total ethanol consumption. In clinical 
studies, seasonal influences on bipolar affective disorders have been 
well documented [46,47]. It has been speculated that seasonal changes 
in mood and behavior may also be closely related to alcoholism in 
humans [48] and animals [49]. Such seasonal interferences might also 
contribute to the higher total fluid intake in OBX rats in the experiment 
with NAC stimulation.

One might argue that the increase in ethanol intake in OBX rats 
may be due the loss of smell. Using a 3-bottle free choice paradigm and 
the constant change of the bottles` position makes such an assumption 
less likely.

Another limitation might derive from housing conditions. To 
measure individual ethanol and fluid intake, the animals were housed 
singly. Single housing is a model used in depression research which 
is also linked to increased ethanol consumption [50,51]. To minimize 
the effect of isolation, the duration of the 3 experimental periods (pre-
stimulation, stimulation, and post-stimulation periods) was limited, 
but we cannot exclude the possibility of an overlap of isolation and 
OBX effects.

The NA can be divided into NAS and NAC which differ 
significantly in anatomical input-out characteristics [52] and 
functional aspects. A plethora of animal and human studies have 
shown that ethanol increases the release of dopamine in the NA (for 
a review, cf. [53]), preferentially in the NAS rather than in the NAC 
[54]. Recently, heterogeneity in the behavioral relevance of NAS sub-
regions to reward-seeking behavior was described [55]. Microdialysis 
experiments suggest that after injection of addictive drugs there is an 
increase in the levels of dopamine in the extracellular area of the NA. 

Beside dopamine, different neurotransmitter systems at the level of the 
NAC circuitry have been linked to different phenomena related to drug 
addiction, such as compulsive use and relapse [55-58].

We selected stereotactic coordinates aimed at the NAC and NAS 
and found that NAS stimulation reduced the voluntary ethanol intake 
in OBX rats. In this experiment the OBX-stim animals showed a non-
significant tendency to have lower ethanol intake values than OBX-
sham animals already in the prestimulation period (Figure 3). 

The effect of DBS is dependent on two variables: the need of 
accurate estimates of effective current spread and its effects on the 
excitable elements of the tissue [59]. Stimulus strengths – distance 
relationships were discussed by others [60]. As shown in Figures 3 
and 5, the effects of DBS on voluntary ethanol intake differed. This was 
really unexpected, because it is unlikely that stimulation was restricted 
to one target alone. The current may spread out, so stimulation of 
one target probably affected the closely adjacent tissue of the other 
target. Such a spread might explain the results by [14]. These authors 
reported that DBS delivered to either the NAC or NAS sub-regions can 
significantly reduce the rat’s ethanol intake. This difference between 
the results obtained by [14] and our own may be due to different 
stimulation protocols. 

Pharmacological investigations revealed that Acamprosate 
(N-acetyl homotaurine) is effective in the relapse prevention of 
alcoholism. Its effectiveness was explained in terms of antagonism 
on NMDA receptors [61-66]. In the study by Henderson et al. [18] 
and in the present results it was shown that DBS in the NA reduced 
voluntary ethanol intake in rats. Moreover, NAC stimulation inhibited 
the morphine-induced rats associated hyperactivation of glutamatergic 
excitatory neurotransmission in the mesocorticolimbic reward circuit 
[67]. This led to the assumption that at least in part the suppression of 
neuronal activity via the activation of inhibitory interneurons and/or 
depolarization inactivation contributes to the effectiveness of DBS in 
the treatment of drug craving and relapse [68-70]. 

There are different explanations for the effect of DBS on voluntary 
ethanol intake. First, it is questionable whether the decrease in ethanol 
consumption by DBS in the NAS originates from the reduction in the 
reinforcing properties of ethanol or instead by remission of depression 
related symptoms. In the latter case one would argue than DBS in 
the NAS would alleviate hedonic-like symptoms in OBX rats. In a 
recent study it was shown that DBS in the NAC did not affect sucrose 
preference or the consumption of freely available chow. Stimulation 
in the NAS revealed functional dissociation between different shell 
regions [71]. Second, anhedonic effects of OBX have been well 
described in the literature [72-74]. This anhedonic effect may be due 
to the lack of motivation to switch the bottles when the animals found 
the liquid unpleasant. Thus, the effect of NAS stimulation may also be 
explained as a restoration of the motivation to avoid alcohol. For the 
moment this question remains open.

A number of hypotheses which are in part contradictory were 
developed to explain the possible mode of action of DBS in the 
treatment of addiction (for a review, cf. 4). The use of a set of three 
different animal models, i.e. genetically alcohol-preferring rats, intake 
of sweetened alcohol solution, and increased voluntary ethanol 
consumption in OBX rats, might provide a basis upon which to study 
the mechanisms underlying the clinical effects of DBS in addicts.
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