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Efficient transport of drugs into cells in the body is a key factor 
to achieve relevant therapeutic effects for most clinical applications. 
However, this aspect still represents a main obstacle for a considerable 
number of therapeutic agents, such as poorly soluble drugs, relatively 
large molecules, and many biological agents, which cannot gain access 
to the intra-cellular compartment per se. In such cases, coupling of 
therapeutic agents to molecules and/or supra-molecular carriers that 
display affinity toward biological surfaces in the body (a strategy 
known as drug targeting), holds promise to improve drug transport to 
those sites where the therapeutic action is required [1-3]. 

The development of strategies aimed to improving control of 
drug biodistribution at the cellular and/or sub-cellular level is, hence, 
a very active area of research.  Affinity molecules can be chosen 
to favor adhesion to either broadly distributed or rather specific 
biological markers, depending on the degree of selectivity required 
for a particular clinical application. Drugs and/or their carriers can 
be targeted to distribution particular cellular receptors involved in 
endocytic transport or coupled to cell penetrating peptides,  in order to 
achieve intracellular [1-3]. 

A priori, strategies that take advantage of cell surface receptors 
involved in transport of substances into cells may seem a preferable 
choice. For instance, this is the case for receptors of endocytic transport, 
a group of pathways by which cells engulf with their plasma membrane 
extracellular substances and objects, subsequently transporting these 
membrane-surrounded vesicles and their contents into the cell body. 
Drug delivery approaches exploiting said pathways present some 
advantages, such as the use of transport routes that are naturally 
present in the body and typically active, and minimal interference 
with the plasma membrane (as opposed to approaches that porate the 
plasmalemma) and, hence, maintenance of the selective distribution of 
ions and small molecules across this semipermeable barrier [4-6]. 

However, this approach is also restricted by a number of obstacles, 
including the presence and accessibility of adequate and specific 
receptors at the surface of cells that are targets of intervention, presence 
in the body of natural ligands able to bind to these receptors, therefore, 
competing for binding against targeted drugs and drug carriers, and 
potential side effects of disturbing pathways by which cells internalize 
important nutrients and/or signaling factors. 

In many instances, the efficacy of drug uptake by endocytic 
pathways is also restricted by biophysical parameters, e.g., the size of 
the vesicular compartments that can form at the cell surface may be 
not permissive for uptake of drug carriers with certain geometrical 
features [7,8]. Furthermore, when internalized by endocytic pathways, 
drug carriers remain contained within membranous vesicles, e.g., 
endosomes and lysosomes, which may result in hydrolysis of certain 
drugs within these compartments and may also hider access of drugs 
to other sub-cellular locations,  such as the cytosplasm, nucleus, etc 
[8-10]. 

Despite these downsides, targeting of endocytic receptors and 
subsequent endocytic transport of drugs and/or drug carriers are 
advantageous for a number of applications, including those where 

rapid efflux of drugs across the plasmalemma need to be minimized, 
those where the therapeutic action is required in endo-lysosomes, 
or those where the acidic pH of these compartments is taken as an 
advantage for triggering controlled release of drugs from pH-sensitive 
carriers [4,9-12]. 

On the other hand, a number of targeting strategies are built using 
charge-based interaction principles. This is the case for hydrophilic 
and slightly positively-charged polymers and peptides that provide 
affinity to the negatively-charged plasmalemma of cells [4,9,10]. These 
approaches do not require selection of a target receptor or fundamental 
knowledge of its properties and functions, do not involve tedious 
design of specific targeting moieties, are not affected by presence of 
competitor ligands in the body, and may avoid side effects of hijacking 
natural life-keeping pathways. 

Yet, despite these advantages, charge-based targeting strategies 
suffer from lack of selectivity to precise destinations and are less 
prompt to optimization by manipulating natural cell mechanisms. 
Some of these approaches result in direct translocation of drugs and/
or carriers across the cell membrane, which may disrupt the selective 
distribution of molecules at both sides of the plasmalemma. Other 
strategies still result in (passive) endocytic uptake, e.g., due to naturally 
and constant ongoing endocytic activity of cells, and are affected by the 
same obstacles described above. 

Nevertheless, some therapeutic applications may benefit from 
charge-based targeting strategies, e.g., despite their intrinsic lack of 
selectivity, enhanced permeability and retention effect observed in 
tumors still favors accumulation of these systems in tumor regions, and 
potential side effects of cell membrane permeabilization may enhance 
the effects of cytotoxic drugs [3,4,11]. 

Therefore, after several decades of experimental design, it has 
become apparent that targeting strategies offer valuable advantages 
regarding improved intracellular delivery of therapeutic agents. 
However, one should be cautious when considering these approaches 
as efficient and safe in absolute terms, since each particular strategy 
offers both advantages and disadvantages and has to be evaluated under 
the light of the particular clinical application and therapeutic outcome 
required. Detailed characterization of the complex mechanisms 
governing the interaction of targeted drugs and carriers with the 
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biological environment, are necessary steps toward achieving efficient 
drug targeted systems. 
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