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Abstract
Smoking is considered a major risk factor in the onset of rheumatoid arthritis. Smokers who also carry the HLA-

DR4 shared epitope have a higher risk of development of RA. Smoking releases more than 4000 compounds which 
not only affect the cardiovascular and respiratory systems but also bone and joint health. Smokers have a higher risk 
for bone fractures, development of osteoporosis, and degeneration of intervertebral discs. Bone fractures of most 
smokers heal slower than those of most controls. Smoking also lowers bone mineral density, increases production of 
proinflammatory cytokines, and augments the risk of citrullination of proteins in the lungs, and possibly in the joints. 
RA patients who generated antibodies to cyclic citrullinated proteins (CCP) have a higher risk for joint erosions. 
Although response rates are significantly higher in nonsmoking early RA patients than nonsmoking RA patients 
with long-standing disease, response rates are not significantly improved in smoking early RA patients. Smoking 
has decreased response rates to TNF blockers. Additional studies indicated that smoking significantly reduced the 
response rate of infliximab but not etanercept or adalimumab in RA patients. Because one TNF blocker (infliximab) 
had significantly lower response rates in a subpopulation of RA patients (smokers versus never smokers) than two 
distinct TNF blockers, criteria for the development and approval of biosimilars may need to include in vivo trials 
as well as a demonstration of activity against the primary target (e.g. TNFα). Although the most straight forward 
recommendation is for patients to stop smoking, investigations on the effect of smoking on response to therapies 
may serve as a model for elucidating the effect of other environmental contaminants such as air pollution on the 
response to treatment of flares in RA patients. 
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Introduction
Prognosis for many rheumatoid arthritis (RA) patients has vastly 

improved in the last two decades due to the introduction of targeted 
biologic therapies and the improved understanding of the role of 
lifestyle choices. Long term remission of RA is now a prominent goal 
for RA management. The ultimate goal is to modulate a critical pathway 
that subsequently resolves the autoimmune response without globally 
crippling the immune response of the RA patient to pathogenic agents 
and transformed cells. 

Onset of rheumatoid arthritis is a multistep process [1]. 
Predisposing factors such as genetic susceptibilities, environmental 
factors, and immune modulators increase the risk of development 
of RA [1,2] (Figure 1). Alleles of several genes that modulate the 
response to external and self antigens (e.g. HLA-DR4 shared epitope, 
GST1null) increase the risk of RA onset. Low concentrations of vitamin 
D and essential omega 3 fatty acids may skew an immune response 
to a microbial threat, and delay resolution of the inflammatory 
response [3-7]. These predisposing factors can alter gene expression 
by epigenetic and posttranslational processes [1,8-10]. Multiple causes 
can initiate the onset of RA in susceptible individuals who are under 
proinflammatory conditions [2,8]. Previously reported triggering 
events include infection [11,12], bone fracture [13], exacerbation of 
food sensitivities [14,15], and overexposure to smoking [16] or other 
environmental toxins. These events often occur concurrently with a 
significant emotional event. RA progression is associated with greater 
alterations in cytokine profiles and regulatory T cells compared to 
those of healthy controls and patients at RA onset [17]. 

Because the cause of RA onset or flares in any given patient is 
unknown to the physician, immunotherapies have traditionally 
targeted molecules that reduce an aberrant immune response. Current 

immunotherapies include the TNF blockers (etanercept, infliximab, 
adalimumab, certolizumabpegol, golimumab), the IL-1 receptor 
antagonist (anakinra), a blocker of costimulation (abatacept), an IL-
6R blocker, and a monoclonal antibody (mAb) that depletes CD20+ 
B cells (rituximab). Efficacy of the biologics ranges from 15%-82% of 
patients. Because some patients on biologic therapy do not improve 
and a few patients experience a flare or worse symptoms [18], pursuit 
of biological markers that correlate with the response to therapy are 
ongoing. No markers have provided sufficient correlation to warrant 
their incorporation into clinical decisions. The choice of therapy 
remains a “trial and error” or trial and learn scenario [19]. Elucidation 
of a treatment with the highest frequency of efficacy for a given RA 
subpopulation would improve the current “trial and error” decisions 
for that subgroup. RA patients who currently smoke comprise approx. 
20-27% of the British and Swedish RA populations, respectively.
Smokers in the US comprised 20.8% of the adult population in
2008, similar to the prevalence of smokers (20.9%) in 2004 [20]. This
review summarizes the effect of smoke on the overall RA disease, the
immunologic and skeletal mechanisms involved in RA, and the efficacy
of various immunotherapies in the subpopulation of RA patients who
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are smokers. This review also notes gaps in the knowledge of the effects 
of immunotherapies on smokers. 

Smoking’s Effect on RA Disease
Smoking is a major risk factor for RA onset worldwide and is 

estimated to be a major factor of RA onset in about 1 in 5 RA patients 
in Sweden [21] and up to 35% of RA patients who exhibit anti-
citrullinated protein antibodies [16,21]. Longer duration and higher 
intensity of smoking increased the risk of onset of RA [22], especially 
ACPA positive RA [23]. Smoking was associated with earlier age 
of onset of RA [24,25]. Smoking also hastened RA progression [26], 
especially radiographic progression in some studies [27,28] but not 
others [25,29]. 

In early RA patients, smoking was associated with higher RA 
disease activity (number of tender joints, Larsen’s score, DAS-28, 
higher frequency of autoantibodies), and severity independent of 
age, alcohol consumption, follow-up duration, and gender [23,24,30]. 
Prospective monitoring of 100 early RA patients for 2 years indicated 
that RA disease activity (swollen and tender joints, pain) increased 
stepwise from never smokers to former smokers to current smokers 
[31]. Heavy smoking (≥20 packs/yr) was significantly associated 
with greater loss of daily functioning (higher HAQ score, lower grip 
strength) and development of rheumatoid nodules [28]. 

Smoking was positively correlated with Rheumatoid Factor (RF) 
levels, especially IgA RF in one study [28], but not another study 
[31]. Former or current smokers developed IgA RF more often than 

nonsmokers [31]. IgARF is associated with higher radiological score 
for joint erosion [31].

Smoke 
Cigarette smoke (CS) contains a mixture of approximately 4000 

toxic substances including nicotine, polycyclic aromatic hydrocarbons 
(carcinogens), unsaturated aldehydes, solvents, free radicals, carbon 
monoxide, and other gases [32]. Nicotine concentration in plasma is 
<1 mcg/mL in light to heavy smokers while tissues harbor 1-10 mcg/g 
[33]. Cigarette smoke induces reactive nitrogen species, reactive oxygen 
species, and reactive sulfur species which can damage proteins, lead to 
exposure of novel epitopes, and induce antibodies against self-proteins 
such as type II collagen [34]. In addition, cigarette smoke increases the 
probability of citrullination of mucosal proteins by peptidyl arginine 
deiminase type IV (PADI4). PADI4 is overexpressed in synovial fluid of 
RA patients compared to samples of osteoarthritis [35]. Novel epitopes 
in the citrullinated proteins (citrullinated fibrinogen, alpha-enolase, 
vimentin, type II collagen, and fillaggrin) can stimulate significant titers 
of anti-citrullinated protein antibodies (ACPA). High titers of ACPAs 
in RA patients correlate with a higher incidence of erosions [36]. 

Smoking and Genetic Susceptibility to RA
In monozygotic twin studies, concordance rate of RA ranges from 

12% to 30% [37,38]. Since most twins are raised by their family in the 
same house with similar diets, lifestyle choices, and environmental 
exposures, the concordance rate not only includes the contribution of 
genetic susceptibilities but also subtle differences in the interactions 
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Figure 1: Development of the rheumatoid arthritis and the onset of flares involves a multistep process. Predisposing factors were categorized into immune modulators 
and environmental factors. Genetic risk factors include genes in immune modulation (e.g. HLA-DR4 shared epitope, PTPN22, TNFα polymorphisms and the detoxification 
pathways (e.g. GST1null [52]) [1] and references therein). Diets that contain > 5:1 omega 6 to omega 3 fatty acids increase the risk for prolonged inflammation [6]. One 
of these potential triggering events often coupled with an emotional stress is associated with the onset of RA, although other causes which induce 34-54% of RA cases 
have yet to be elucidated [8]. Patients exposed to additional triggering events can experience further RA progression and flares. This figure was inspired by Figure 1 
from McInnes and Schett [1]. 
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between their genetics and their predisposing factors, emotional 
influences [39], smoking [40], and the initiating triggers of RA. 

Genetic susceptibility to RA can be grouped into (i) genes that 
influence the immune and inflammatory responses, (ii) genes that 
encode enzymes for generation of novel self-antigens [41], and (iii) 
genes in the detoxification system. Smoking has been shown to increase 
the risk for developing RA, especially in people who contain the HLA- 
DRB1 shared epitope in most ethnic groups including Koreans [42], 
Danes [43], but not all populations such as Brazilians [44]. The shared 
epitope is found in 31%-70% of RA patients of most ethnic groups, 
but present in greater than 90% in Native American RA patients 
[45] and references therein. The shared epitope (SE) is located in the 
third hypervariable region of HLA-DRB1 (amino acids 70-74) in the 
following alleles: DRB1*0401, DRB1*0404, DRB1*0405, DRB1*0408, 
DRB1*0101, DRB1*102, DRB1*1001 and DRB1*1402. Patients who 
are SE homozygotes and heavy smokers had a 7.47 fold [46] to 50 fold 
higher risk of developing RA than nonsmoking, SE negative patients 
[43,47]. Southern European smokers had an earlier onset of RA [24]. 
Some populations of heavy smokers exhibited a higher risk for anti-
citrullinated protein antibody positive RA [47] or for RF positivity and 
rheumatoid nodules [48] but not ACPA-negative RA. Smokers had a 
poorer response rate to medication than previous or never smokers in 
some studies [49] but not all studies [29]. One potential mechanism is 
that some smokers may induce citrullinated proteins in the joints since 
smokers induce citrullinated proteins in bronchoaveolar lavage where 
as nonsmokers did not [47].

ACPA seropositivity is associated with a higher incidence of 
erosions in RA patients but is not dose dependent [50]. Smokers with RA 
had significantly higher titers of ACPA than nonsmokers [50]. Analysis 
of polymorphisms at the PADI4 show that a haplotype containing 
three polymorphisms in PPDI4 genepadi4_89 (rs11203366), padi4_90 
(rs11203367), and padi4_92 (rs874881) in Koreans is significantly 
associated with risk of RA development in both anti-CCP positive RA 
and anti-CCP negative RA patients [42]. No association with single 
PAD4 polymorphisms in Caucasians has been reported. Surprisingly, 
risk of RA in individuals with the PADI4 haplotype or single alleles 
were not associated with smoking [51]. 

Glutathione S transferases (GST) and hemeoxygenase 1 (HMOX1) 
genes encode enzymes involved in inactivation of toxins and their 
subsequent removal. GST conjugates glutathione to cytotoxic 
carcinogens and metabolites for efficient excretion. GSTM1 null allele 
is associated with higher risk for RA [52]. Since smoking produces 
many toxic substances, Bohanec et al. proposed that the null allele of 
GSTM1 may increase the risk of RA in smokers [53]. The presence of 
the GSTM1 null allele increased the risk of RA onset in SE homozygotes 
approx. 8 fold [53]. Smoking increased the probability of Rheumatoid 
Factor (RF) production in patients with the null allele of GSTM1 [54]. 
Inducible HMOX1 enzyme, which catabolizes heme into unbound iron, 
carbon monoxide, and biliverdin, is overexpressed in lesions in synovial 
tissues from RA patients compared to those of other subjects [55]. It 
exhibits anti-oxidant, anti-inflammatory and cytoprotective activities. 
Nicotine reduces HMOX1 levels while increasing proinflammatory 
cytokines [55]. One polymorphism in the HMOX1 gene promoter 
(rs2071746) reduces its expression [56]. 

Smoking and Joints
Smoking has a broad range of negative effects on bone metabolism, 

including profound bone loss [57]. Smokers have a higher risk for 

bone fractures [58], development of osteoporosis [57,59], degeneration 
of intervertebral discs [58,60], and slower healing of bone fractures 
[58,61]. Bone mineral density values were significantly lower in 
smokers than those in nonsmokers [62]. Proposed mechanisms include 
vasoconstriction by nicotine, reduced exchange of nutrients and waste 
products [60], and direct effects on cells in the joints. Water soluble 
smoke concentrate (WSSE) reduces cell viability and metabolism 
of human disc cells, induces an inflammatory response, augments 
expression of metalloproteinases, and decreases active matrix 
synthesis and expression of its structural genes in human disc cells 
[60]. Smokers often have normal levels of markers for bone formation 
but augmented markers for bone remodeling [57] which is consistent 
with observations of periodontal bone loss in smokers [62]. Nicotine 
stimulated metalloproteinase 9 (MMP-9) from a human neutrophil 
differentiation model, consistent with higher MMP-9 levels found 
in smokers [63]. It also reduced the size of the oxidative burst from 
neutrophils and inhibited bacterial killing [63]. Nicotine significantly 
stimulated TNFα secretion from human osteoblasts [64].

Total protein content, insulin-like growth factor 1 (IGF-1), and beta 
fibroblast growth factor (bFGF) were significantly reduced in synovial 
tissue of smokers compared to those of nonsmokers [65]. Smoking 
significantly reduces the early secretion of tumor growth factor (TGFβ) 
[61] and TNFα levels [66].

Smoking and Immune Responses
Cigarette smoke increases the risk of pulmonary infections, lung 

cancer, bacterial and fungal infections, as well as the onset of RA. 
Cigarette smoke modulates both the innate and acquired immune 
responses. Its effect on cytokines and cell types can differ depending 
on the species, dose, and conditions of the assay (in vivo, ex vivo, 
nutritional status, in vitro, smoke components, stimuli and genetic 
susceptibility). Human lymphocytes exposed to mild (30 mmHg) 
but not high (200 mmHg) concentrations of smoke showed NF-κB 
activation, reduction of intracellular glutathione levels, and subsequent 
enhanced inflammatory gene expression [67,68]. The effects of smoke 
exposure tracked the nitric oxide (NO) dose-dependent response: low 
doses activated NF-κB while high NO levels inhibited its activation 
[68]. Bronchoalveolar lavage (BAL) derived macrophages of smokers 
showed less clearance of apoptotic cells, reduced glutathione levels, 
inefficient antigen presentation, and increased proinflammatory 
cytokines compared to those of healthy controls [69]. In contrast, 
macrophages from nonsymptomatic smokers showed significantly 
lower mRNA levels of IL-6, TNFβ, interferon gamma, IL-13, and 
various chemokines (CCL5, CCL3, CCL4, and CCL20) [70]. LPS-
stimulated BAL-derived alveolar macrophages from smokers showed 
reduced secretion of TNFα, IL-6, and IL-8 [71]. However, smoking 
augments the production of proinflammatory TNFα in the serum [72], 
but reduces the TNFα production from plasmacytoid dendritic cells in 
vitro [73]. 

In addition, smoking significantly affects the transcription of 324 
genes in human lymphocytes, including 66 genes involved in cell 
cytotoxicity (47 negatively correlated and 19 positively correlated), 
38 involved in the immune response (30 negatively associated and 8 
positively associated), 18 genes for an inflammatory response, 11 in NK 
cell signaling, 31 for cell activation, 29 for cell adhesion, and 27 for 
lymphocyte cell proliferation among others [74]. Thus, modulation of 
additional genes may contribute to smoking’s effect on RA onset and 
progression. 
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Smoking may also affect the gut associated lymphoid tissue 
(GALT) as smokers develop Crohn’s disease at a 1.75 fold higher rate 
than nonsmokers [75,76]. Interestingly, smoking reduces the rate of 
ulcerative colitis [75,76]. Since NSAIDs also induce inflammation 
of the gut and increase intestinal permeability, RA patients who are 
smokers and utilize NSAIDs for pain relief may be at a higher risk for 
development of food sensitivities or allergies which can exacerbate RA 
symptoms in some patients [14]. 

Smoking and Immunotherapies
Immunotherapies can be grouped into 2 categories: general targeted 

therapies and antigen-specific immunotherapies. The effect of smoking 
on responses to therapy in RA has not been systematically examined 
for most immunotherapies. Although treatment of nonsmokers who 
were recently diagnosed with RA significantly improved their Disease 
Activity score in an inverse relationship to duration of RA, smoking 
obscures or eliminates this effect [49]. Thus, a window of opportunity 
to obtain higher therapeutic responses in very early RA patients was 
not evident in smokers [49].

Smoking and General Targeted Immunotherapies 
General targeted immunotherapies include inhibitors of cytokines 

(TNF blockers, IL-1Ra, IL-6 blocker, IL-17 blocker), disruptors of 
costimulatory signals for T cell activation (Abatacept), a monoclonal 
antibody (mAb) specific for CD20 that depletes CD20+ B cells 
(Rituximab), and stimulators of regulatory T cells. Overall response 
rates to biologics for patients resistant to methotrexate is approximately 
60-70% and no markers currently predict response to a given biologic 
although several sets of gene expression profiles are under investigation 
[77]. 

Smoking did not significantly increase the rate of switching from a 
biologic treatment [78]. The most common reasons for switching from 
a biologic treatment (47%) were inefficacy (43%) and adverse reactions 
(48%) which included malignancy, rash, infections, or cardiovascular 
complications) [78].

TNF Blockers
The advent of TNF blockers has revolutionized the treatment of 

RA. Five currently marketed TNF blockers (etanercept, infliximab, 
adalimumab, and recently golimumab, certolizumabpegol) reduce 
TNF signaling by binding TNFα and blocking the binding of TNFα to 
its cell-bound receptors. TNF blockers utilize three basic mechanisms 
to remove TNFα from fluids: etanercept is a fusion protein consisting 
of a soluble TNF receptor 2 linked to a Fc component of human 
immunoglobulin; infliximab is a mouse-human chimeric monoclonal 
antibody (mAb) and adalimumab and golimumab are humanm Ab 
that react with TNFα; certolizumabpegol is a pegylated Fab fragment 
of a humanized mAb that binds TNFα. Etanercept, infliximab, 
adalimumab, golimumab provide a moderate or good EULAR response 
in approximately 50-75% of RA patients in the initial 6 months [79-
81]. Certolizumabpegol appears to have a similar efficacy and a higher 
burden of adverse events [82]. 

Current smokers with early RA were less likely to respond to 
treatment with TNF blockers [79,83-85]. Saevarsdottir et al. [84] 
examined the effect of smoking on response to therapy in the pool of 
early RA patients who had received TNF blocker therapy (infliximab 
(n=199); etanercept (n=136); adalimumab (n=66)). Current smokers 
had a significantly lower rate of good response to TNF blockers after 
3 months (29%) than never smokers (43%, P=0.05). Previous smokers 

had an intermediate rate (39%) which was similar to never smokers. 
Current smoking remained a predictor of higher risk for poor response 
in multivariate regression analysis at both 3 months (OR: 0.52; CI: 0.29-
0.96) and at 6 months (OR: 0.55, CI: 0.31-0.96) in this study population. 
Because the responses of the patients on TNF blockers were pooled, the 
efficacy of the three TNF blocking agents in smokers was not compared 
[84]. The effect of smoking on the response rates of golimumab and 
certolizumabpegol in RA patients who are smokers remains unclear. 

Hyrich et al. examined the factors that correlated with response of 
RA patients to infliximab (n=1612) or to etanercept (1267) at 6 months 
[79]. Higher baseline HAQ score, but not age, gender, disease duration, 
or rheumatoid factor status, was associated with a poorer response to 
either etanercept or infliximab. In contrast, concurrent use of NSAIDS 
was associated with a higher EULAR response to these two TNF 
blockers. In addition, current smokers with RA who were treated with 
infliximab but not etanercept, were less likely to respond adequately 
[79]. Multivariate regression analysis indicated that current smoking 
in infliximab-treated RA patients was a significant inverse predictor of 
EULAR responses (OR: 0.77, CI: 0.60-0.99); but smoking in etanercept-
treated RA patients did not significantly affect responses (OR:1.00, CI 
0.77-1.31) [79]. 

Soderlin et al. [85] compared the 3 month, 6 month, and 12 month 
efficacy of the three TNF blockers in RA patients who were previous 
(n=345) or current smokers(n=216) to those who never smoked 
(n=373). Previous and current smokers had a worse response to TNF 
blockers as measured by the Simplified Disease Activity Index (SDAI) 
at 3 months, 6 months, and 12 months than RA patients who were 
never smokers according to univariate analysis [85]. Whereas the SDAI 
response to adalimumab was equivalent to the response to etanercept 
at 3 months, 6 months, and 12 months in this RA patient population 
according to multivariate analysis, the SDAI response to infliximab was 
significantly reduced at 3 months (OR=0.56, CI 0.35-0.90), 6 months 
(OR=0.29, CI 0.15-0.53) and at 12 months (OR=0.36, CI 0.18-0.75) 
[85]. Heavy smokers showed the least benefit as a group [85]. 

Two studies [79,85] indicated that the efficacy of infliximab is 
less in smokers than nonsmokers. Potential mechanisms for the 
reduced therapeutic benefit of infliximab in smokers include increased 
citrullination of proteins in smokers, the potential of the citrullinated 
proteins to induce crossreactive autoantibodies to joint constituents 
(ACPA), the higher burden of toxins, and higher nutritional needs (e.g. 
ascorbate, folate) [86-88]. The mechanisms that induce the differential 
response rate of etanercept and adalimumab in RA patients that are 
smokers compared to that of infliximab are unclear. The three TNF 
blockers appear to primarily target soluble TNFα rather than cell 
associated TNFα. Differences in binding affinities between the three 
TNF inhibitors do not appear to account for differential response 
rates in smokers: the binding affinity of etanercept (Kd=0.4 pM) to 
TNFα was 10-20 fold greater than the affinity of infliximab (4.2 pM) 
or adalimumab (8.6 pM), yet adalimumab shows similar efficacy in 
RA patients who are smokers as etanercept [85]. Another possible 
mechanism is the effect of smoking on apparent clearance of the TNF 
blockers [89] which can be addressed in future studies. 

The effect of smoking on response rate of patients who are APCA-
positive or ACPA-negative and treated with TNF blockers has not been 
reported. Because one TNF blocker (infliximab) had significantly lower 
response rates in a subpopulation of RA patients (smokers versus never 
smokers) than two distinct TNF blockers, criteria for the development 
and approval of biosimilars may need to include in vivo trials as well as 
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a demonstration of activity against the primary target (e.g. TNF). 

Effect of Smoking on Response to IL-1Receptor 
Antagonist (IL-1Ra), IL-6 Blocker, Anti CD-20 Biologic 
Therapy, and Emerging Therapies

The effect of smoking on the response to treatment of RA patients 
with IL-1Receptor Antagonist (IL-1Ra) [90], IL-6 blocker [91], anti 
CD-20 biologic therapy [92-94], or emerging therapies (JAK inhibitors, 
cell therapy, tolerogenic dendritic cells, dnaJP1, tolerogenic collagen 
type II) has not been studied. However, smoke can affect IL-1Ra 
plasma concentrations [95], IL-1 and IL-1Ra serum concentrations 
[96-98], IL-6 production [99], and the probability of developing ACPA 
antibodies (which are a predictor for efficacy with anti-CD20 biologic 
therapy) [92-94]. In addition, smoking induces heme oxygenase-1 
(HO-1) via a JAK2 dependent cascade [100] (which are modulated 
by kinase inhibitors), does not significantly affect the harvest size of 
primitive progenitor cells from healthy individuals [101], reduces 
efficacy of hematopoetic stem cell therapy for cancer [102], and lowers 
the efficiency of antigen presentation [69]. Thus, studies that directly 
compare the efficacy of any biologic therapy or emerging therapies in 
RA patients who are smokers versus the efficacy in nonsmoking RA 
patients are needed to assist clinicians in choosing medications with 
the highest probability of efficacy for RA patients who are smokers. 

Conclusions
Exposure to smoke is a major factor in the onset of rheumatoid 

arthritis in about 20% of Swedish patients, especially those who carry 
the HLA-DR4 shared epitope. Smoking releases more than 4000 
compounds, some of which affect bone and joint health. Smokers 
have a higher risk for bone fractures, development of osteoporosis, 
degeneration of intervertebral discs, and slow healing of bone 
fractures. Smoking lowers bone mineral density, increases secretion of 
proinflammatory cytokines, and augments the risk of citrullination of 
proteins,which increases the risk for joint erosions. Response rates for 
smokers are similar between early RA patients and those with chronic 
RA history. Smokers have lower response rates to the TNFα blocker, 
infliximab but not etanercept or adalimumab than nonsmokers. 
Criteria for biosimilars may need to include studies that assess 
responses in smokers as well as demonstrate binding activity to a target 
protein. The effect of smoking on the response rates to other current 
immunotherapies or to emerging therapies is currently unknown. 
Although the most straight forward recommendation is for patients to 
stop smoking, investigations on the effect of smoking on therapeutic 
response rates may serve as a model for elucidating the effect of other 
environmental contaminants such as air pollution, formaldehyde, 
and volatile organic compounds on the response to treatment of 
environmental toxin-induced flares in RA patients. 
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