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Introduction
Hyperosmolarity, usually defined as solutions that have a 

higher osmolarity compared with the normal extracellular fluid 
(around 300 mOsm/L), can be found in different physiological and 
pathophysiological conditions, such as dehydration, the high osmolarity 
of the interstitial fluid in the medulla of the kidney or hyperglycemic 
hyperosmolar syndrome in diabetic patients. The osmolarity can be 

as high as 1200 to 1400 mOsm/L in such states, 3 times higher than 
that of normal interstitial fluid around most body cells. Although 
detrimental to some cell function, acute hyperosmolarity has also been 
found capable of exerting protection to some extent. Previous studies 
have shown that small amount of hyperosmotic solutions such as 
hypertonic saline (7.5% NaCl, 2400 mOsm/L), especially when given 
in dextran, were effective in shock resuscitations of different causes 
including sepsis, burn and pancreatitis [1-5]. In our previous study 
in diabetes, we found that severe hyperglycemia rendered diabetic 
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Abstract
Background: Hyperosmotic solutions have been used successfully in different shock resuscitations with 

cardioprotection. This study was to examine the effects of hyperosmotic sodium chloride on isolated heart function and 
heart responses to ischemia/reperfusion in normotensive and hypertensive rats. The roles of hyperosmolarity-induced 
antioxidants including hyperosmolarity-relevant heat shock proteins as well as vasodilating endothelial nitric oxide 
synthase (eNOS) and vasoactive catecholamines were investigated. 

Methods: Hearts of normal rats and stroke-prone spontaneously hypertensive rats were isolated and perfused 
for 30 min with control Krebs-Henseleit buffer (osmolarity 300 mOsm/L) or hyperosmotic buffer of different sodium 
chloride concentrations (320, 350 and 400 mOsm/L) before subjected to 40-min global ischemia followed by 10-min 
hyperosmotic reperfusion and 30-min normal buffer reperfusion. Heart function, creatine phosphokinase leakage and 
myocardial antioxidants were examined. Myocardial antioxidants after hyperosmotic perfusion with different osmolytes 
were assayed with Western blotting. 

Results: Pre-ischemic hyperosmotic sodium chloride perfusion enhanced heart contractility and diastole function 
and reduced coronary vascular resistance in both normal and hypertensive hearts. Post-ischemic recoveries of heart 
function were improved in hyperosmotic perfused hearts, associated with lower creatine phosphokinase leakage, 
higher coronary flow, reduced coronary resistance and lower norepinephrine overflow. At the end of reperfusion, the 
myocardial activities of total superoxide dismutase and catalase, glutathione content as well as osmosis-relevant heat 
shock protein 32 and 90 were increased in hyperosmotic hearts. In addition to sodium chloride, in vitro hyperosmotic 
mannitol, glucose and raffinose also increased protein expressions of antioxidants including superoxide dismutase, 
catalase, heat shock protein 32 and 90 and vasodilating eNOS. 

Conclusion: Hyperosmotic perfusion enhanced heart function and preconditioned normal and hypertensive hearts 
against ischemia/reperfusion injury. The hyperosmolarity-induced up-regulations in myocardial antioxidants including 
heat shock proteins and eNOS may play an important role in the hyperosmolarity-induced cardioprotection.
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hearts resistant to ischemia and reperfusion injury, with significant up-
regulations of hyperosmolarity-related antioxidants, giving rise to our 
interest in the innate or adaptive responses of cardiovascular system to 
hyperosmolarity [6-8].

The major benefit of hyperosmotic solutions given in vivo is the 
rapid expansion of plasma volume, which leads to an improvement 
in cardiovascular function and tissue microcirculation. However, 
the detailed responses of normal and hypertensive hearts to different 
hyperosmolarity irrespective of plasma volume expansion are not clearly 
elucidated. Studies including ours have showed that hyperosmotic 
NaCl or glucose in vitro could improve myocardial function in thermal 
injury as well as coronary flow after ischemia/reperfusion injury [3, 
9-12]. We have found that hyperosmotic glucose or mannitol could 
induce endothelial nitric oxide synthase (eNOS) and heme oxygenase 
(HO, also called heat shock protein 32, HSP32) in rat heart and aorta 
with enhanced vasodilation [6,7,12]. We therefore hypothesized that 
hyperosmolarity may play an important role in the observed protection 
of hyperglycemia. However, glucose can pass through cell membrane 
easily to counteract the osmolarity gradient applied and have metabolic 
effects as well. Therefore, we chose hyperosmotic NaCl, which does not 
have metabolic effects as glucose does, to test whether it could have 
similar cardioprotection as hyperglycemia.

In the present study, we examined heart function responses to 
hyperosmotic NaCl in isolated normotensive and hypertensive hearts, 
which were subsequently subjected to ischemia/reperfusion injury. 
Systolic and diastolic heart function, myocardial creatine phosphokinase 
leakage and myocardial antioxidants after ischemia/reperfusion were 
examined. We also test the hypothesis that hyperosmolarity might be 
responsible for the cardioprotection and hyperosmotic solutions with 
different osmolytes would induce myocardial antioxidants including 
osmosis-related heat shock proteins 32 and 90 (HSP32 and HSP90) 
as well as vasodilating eNOS. The myocardial overflow of vasoactive 
catecholamines, i.e., epinephrine and norepinephrine were also 
measured after ischemia.

Meterials and Methods
Animals

Forty male normotensive Wistar-Kyoto rats (WKY) and forty male 
stroke-prone spontaneously hypertensive rats (SHRSP) from Animal 

Center of Kinki University School of Medicine, Osaka, Japan (donated 
by Professor Tsuneyuk Suzuki) were used in the present study. They 
were housed in groups up to two rats in a temperature-controlled 
room (23±1°C) on a regular 12-hour light and dark cycle and had free 
access to tap water and chow until sacrifice at the age of 5 months. The 
mean body weight levels of WKY and SHRSP before heart experiments 
were 403±8 g and 280±5 g, respectively. Systolic blood pressure levels 
in conscious state were measured by tail-cuff method, which were 
120±2 mmHg in WKY group and 225±5 mmHg in SHRSP group, 
respectively. All experiments conformed to the Guide for the Care 
and Use of Laboratory Animals by the Chinese Academy of Science 
of Shanghai. 

Isolated heart preparation 

Isolated heart perfusion was performed as published previously 
[6,7] with modifications. Briefly, under anesthesia with sodium 
pentobarbital (60 mg/kg, i.p.), the hearts were excised and connected 
rapidly to the aortic cannula of a Langendorff apparatus. The retrograde 
perfusion was instantly started with Krebs-Henseleit buffer (KH 
buffer)([mmol/L]: NaCl 118.0, KCl 4.7, CaCl2 2.5, MgSO4 1.2, KH2PO4 
1.2, NaHCO3 25.0, glucose 11.0) kept at 37°C and bubbled constantly 
with 95% O2 and 5% CO2 (pH 7.4) throughout the perfusion period. 
The left atrium was connected to a cannula for filling of left ventricle. 
Perfusion pressure in the aorta and left atrium was set at 70 mmHg and 
15 mmHg, respectively. 

A catheter (PE-50) was inserted into the left ventricular cavity 
through the apex and connected to a pressure transducer (PT-140DM, 
Fudan University, Shanghai, China). The intra-ventricular pressure 
changes including left ventricular systolic pressure, left ventricular end-
diastolic pressure (LVEDP) and heart rate were recorded throughout 
the experiment with computerized data acquisition system (MPA 2000, 
Alcott Biotech Co., Shanghai, China). Cardiac contractile and diastole 
function as represented by maximum increase and decrease rates of left 
ventricular pressure (dP/dtmax and dP/dtmin, respectively) was derived 
by the data acquisition system automatically from the intra-ventricular 
pressure changes. Left ventricular developed pressure (LVDP) was 
calculated as left ventricular systolic pressure minus LVEDP. The rate-
pressure product (RPP) was calculated as heart rate times LVDP. The 
timed 5-min collections of coronary effluent were recorded as coronary 
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Figure 1: Coronary flow and coronary vascular resistance after 30-min hyperosmotic perfusion. Hyperosmotic NaCl perfusion (osmolarity at 320, 350 and 400 
mOsm/L versus control at 300 mOsm/L) increased coronary flow (a) and reduced coronary vascular resistance (b) in both normotensive Wistar-Kyoto rats (WKY) and 
stroke-prone spontaneously hypertensive rats (SHRSP). n=9-10. *P<0.05, **P<0.01 versus respective controls.
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flow corrected for wet ventricular weight and coronary vascular 
resistance was calculated as perfusion pressure divided by coronary 
flow. Samples of coronary effluent and myocardium collected after 
ischemia/reperfusion were stored at –70°C until assay.

Hyperosmotic perfusion and induction of ischemia/
reperfusion 

After 10-min equilibration and 30-min hyperosmotic perfusion 
(the osmolarity of KH buffer adjusted to 320, 350 and 400 mOsm/L by 
addition of different concentrations of NaCl, with normal KH buffer of 
300 mOsm/L as control), the hearts were subjected to global ischemia 
at 37°C by clamping both atrial inflow and aortic outflow for 40 min. 
The thermostatic glassware, in which the hearts were suspended, was 
covered to maintain temperature and prevent the hearts from drying 
out during ischemia. Ischemia was followed by 10-min hyperosmotic 
reperfusion and 30-min normal buffer reperfusion. The reperfusion 
was started by opening of both atrial and aortic cannulae and the hearts 
were allowed to restore beating spontaneously. 

Biochemical assays 

Creatine phosphokinase (CPK) was measured from the timed 5-min 
collections of coronary effluent using standard spectrophotometric 
method with CPK assay kit (Jian-Cheng Biomedical Engineering Co., 
Nanjing, China), following the manufacturer’s instructions. Total 
integrated CPK activity over the 40-min reperfusion was calculated 
for each heart and corrected for wet ventricular weight. Myocardial 
lipid peroxide product maleic dialdehyde (MDA) and antioxidants 
including activities of total superoxide dismutase (SOD), catalase and 
glutathione (GSH) were determined after reperfusion using respective 
assay kits (Jian-Cheng Biomedical Engineering Co.) [10].

Heart perfusion with hyperosmotic solutions of different 
osmolytes 

Sodium chloride, mannitol, glucose or raffinose were added to KH 
buffer separately to obtain perfusate osmolarity of 350 mOsm/L and 
normal hearts were perfused with these hyperosmotic perfusates for 2 
h continuously. Then left ventricular apex was sampled and myocardial 
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Figure 2: Myocardial contractility and diastolic function after 30-min hyperosmotic perfusion. Hyperosmotic NaCl perfusion (osmolarity at 320, 350 and 
400 mOsm/L versus control at 300 mOsm/L) enhanced myocardial contractility (a) in both normotensive Wistar-Kyoto rats (WKY) and stroke-prone spontaneously 
hypertensive rats (SHRSP). Diastolic dysfunction in SHRSP was significantly ameliorated by hyperosmotic NaCl (b, c). Hyperosmotic perfusion was also effective in 
reducing heart rate and workload in SHRSP at higher osmolarity (d, e). LVEDP, left ventricular end-diastolic pressure; RPP, rate-pressure product. n=9-10. *P<0.05, 
**P<0.01 versus respective controls.



Citation: Shen WL, Chen LB, Zhao JX, Guo SJ, Chen YC (2011) Effects of Hyperosmotic Sodium Chloride Perfusion on Ischemia/Reperfusion Injury 
in Isolated Hearts of Normal and Stroke-Prone Spontaneously Hypertensive Rats. J Clinic Experiment Cardiol 2:146. doi:10.4172/2155-
9880.1000146

Page 4 of 10

Volume 2 • Issue 7 • 1000146
J Clinic Experiment Cardiol
ISSN:2155-9880 JCEC, an open access journal 

antioxidants including copper zinc SOD (CuZnSOD), manganese SOD 
(MnSOD), catalase, eNOS and inducible NOS (iNOS) as well as HSP32 
and HSP90 were determined with Western blotting. 

Determination of catecholamines in coronary effluent

The timed 5-min collections of coronary effluent were stabilized by 
the addition of perchloric acid and Na2-EDTA to final concentrations of 
0.01 mol/L and 0.025%, respectively. Epinephrine and norepinephrine 
present in the effluent were concentrated by adsorption on acid-
activated alumina adjusted to pH 8.6 with 1 mol/L Tris-2% EDTA 
buffer. Then the catecholamines were eluted into acetic acid for 
assay. Total cumulated catecholamines over the entire reperfusion 
period was calculated for each heart and corrected for wet ventricular 
weight. Dihydroxybenzylamine was added to each sample as an 

internal standard before alumina extraction and used for recovery rate 
calculation. Norepinephrine and epinephrine were measured with high 
performance liquid chromatography coupled with electrochemical 
detection (Agilent 1100 Series, HP1049, HP Co., USA) [9]. 

Western blotting 

Middle parts of left ventricles after ischemia were freeze-
clamped and homogenized in lysis buffer (pH 7.4) for protein assay 
as previously described (6). Protein samples were loaded onto SDS-
PAGE, and transferred to polyvinylidene difluoride membrane after 
electrophoresis. Blots were incubated overnight at 4°C with antibodies 
against CuZnSOD (1:3000; Calbiochem, Darmstadt, Germany), 
MnSOD (1:3000; BD Biosciences Pharmingen, USA), catalase (1:2000; 
Calbiochem), eNOS (1:2000; Sigma-Aldrich, Saint Louis, Missouri, 
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Figure 3: Coronary flow, coronary resistance and cumulated coronary catecholamines (CA) overflow after ischemia/reperfusion with and without 
hyperosmotic perfusion. Hyperosmotic NaCl perfusion enhanced coronary flow (a, b) and reduced coronary vascular resistance (c, d) after ischemia/reperfusion in a 
dose-dependent way, in both normotensive Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Coronary norepinephrine overflow 
was reduced in hyperosmotic perfused WKY and SHRSP hearts (e, f) in a pattern similar with the reduction in coronary resistance, with the best effect being in 350 
mOsm/L group. CA, catecholamines. n=7-10. *P<0.05, **P<0.01 versus respective controls.
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USA), iNOS (1:2000; Santa Cruz Biotechnology, USA), HSP32 and 
HSP90 (1:3000; Stressgen, Victoria, BC, Canada). Immunoreactive 
bands were visualized using enhanced chemiluminescence detection 
and relative levels of proteins were semiquantified with densitometry, 
normalizing to tubulin (1:5000; Sigma-Aldrich).

Statistical analyses and calculations

Data are expressed as mean±SEM. Two-way ANOVA followed 
by Student-Newman-Keuls post hoc analysis. Repeated measurement 

ANOVA was used for values of time-dependent trends of functional 
parameters during reperfusion. Significance was defined as P<0.05. 

Results

Isolated heart responses to hyperosmotic perfusion 

As shown in Figure 1, hyperosmotic NaCl perfusion increased 
coronary flow and reduced coronary vascular resistance in both WKY 
and SHRSP, which was more prominent in WKY. Hyperosmotic 
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Figure 4: Heart function recovery after ischemia/reperfusion with and without hyperosmotic perfusion. The post-ischemia/reperfusion recovery of heart 
function and work product were better in hyperosmotic perfused Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). LVDP, left 
ventricular developed pressure; RPP, rate-pressure product. n=7-10. *P<0.05, **P<0.01 versus respective controls.
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perfusion also enhanced myocardial contractility indicated by elevation 
in dP/dtmax (Figure 2a). The myocardial diastole dysfunction in SHRSP 
was ameliorated by 30-min hyperosmotic perfusion indicated by better 
dP/dtmin and lower LVEDP (Figure 2b and 2c). Hyperosmotic perfusion 
of 320, 350 and 400 mOsm/L reduced heart rate in SHRSP but was only 
effective in WKY at 400 mOsm/L (Figure 2d). Hyperosmotic perfusion 
was also effective in reducing workload in SHRSP at higher osmolarity 
(Figure 2e).

Coronary flow and heart function after ischemia/reperfusion 
injury 

WKY hearts perfused with hyperosmotic NaCl showed higher 
coronary flow and reduced coronary vascular resistance after ischemia/
reperfusion in a dose-dependent way, with the most significant 
effect being in 350 mOsm/L group (Figure 3a and 3c). Coronary 
norepinephrine overflow was reduced in hyperosmotic perfused WKY 
hearts, which shared a similar pattern with the reduction in coronary 
resistance (Figure 3e), indicating the optimal osmolality level for 
coronary relaxation at 350 mOsm/L. There were no significant changes 
in epinephrine release. SHRSP had a similar trend in coronary flow and 
catecholamines (Figure 3b and 3f). Coronary resistance was reduced 
significantly in SHRSP at the osmolarity of 400 mOsm/L (Figure 3d).

The post-ischemia/reperfusion recovery of heart contractility, 
diastole function and work product were better in both hyperosmotic 
perfused WKY and SHRSP hearts (Figure 4).

Myocardial injury
As shown in Figure 5, both WKY and SHRSP hearts perfused 

with hyperosmotic NaCl lowered myocardial CPK leakage and MDA 

levels dose-dependently, indicating less myocardial necrosis and lipid 
peroxide damage. 

Myocardial antioxidants 

Hyperosmotic perfusion enhanced myocardial activities of SOD, 
catalase with higher GSH contents in both WKY and SHRSP hearts 
after ischemia/reperfusion injury (Figure 6), suggesting that beneficial 
effect of hyperosmolarity on myocardial anti-oxidative defense.

Hyperosmolarity-related heat shock proteins 

Two hyperosmolarity-related anti-oxidative heat shock proteins, 
HSP32 and HSP90, were elevated in hyperosmolarity-perfused 
WKY and SHRSP hearts at the end of ischemia/reperfusion (Figure 
7), indicating direct and significant responses of myocardium to 
hyperosmolarity encountered in vitro.

Heart antioxidants after stimulation with hyperosmotic 
solutions of different osmolytes

To determine whether antioxidants up-regulations are induced 
exclusively by hyperosmotic NaCl, hyperosmotic solutions with 
NaCl, mannitol, glucose or raffinose as osmolytes were tested. As 
demonstrated in Figure 8, all of these hyperosmotic solutions could 
induce protein expressions of myocardial antioxidants including 
MnSOD, catalase, eNOS, HSP32, HSP90, with the later three having 
properties of promoting vasodilation.

Discussion
The major findings of the present study include: 1) hyperosmotic 

NaCl perfusion reduced coronary vascular resistance and increased 
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Figure 5: Myocardial creatine phosphokinase (CPK) leakage and maleic dialdehyde (MDA) production after ischemia/reperfusion with and without 
hyperosmotic perfusion. Hyperosmotic NaCl lowered myocardial CPK leakage and MDA dose-dependently in normotensive Wistar-Kyoto r ats (WKY) and stroke-
prone spontaneously hypertensive rats (SHRSP). n=7-10. *P<0.05, **P<0.01 versus respective controls.
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coronary flow with enhanced myocardial contractility at the same 
time in normal and hypertensive rat hearts in vitro; 2) up to 400 
mOsm/L, hyperosmotic perfusion ameliorated myocardial ischemia/
reperfusion injury and heart dysfunction in a dose-dependent manner, 
which was associated with elevation in myocardial antioxidants; 3) 
hyperosmolarity up-regulated myocardial antioxidants in normal and 
hypertensive hearts with or without ischemia/reperfusion.

Hyperosmotic solutions, especially NaCl plus dextran, have been 
used successfully in different shock resuscitations since the early 
report by Velasco and his colleagues who described the use of small 
volumes of hypertonic NaCl solution (NaCl 7.5%, 2400 mOsm) for 
treating hemorrhagic shock [13]. The underlying mechanisms have 

been proposed due to its effectiveness in expanding blood volume, 
improving cardiac function and myocardial microcirculation as 
well as anti-inflammation effect [1-5,14]. In the present study, we 
found that hyperosmotic NaCl enhanced myocardial contractility 
and coronary flow within 30-min perfusion in vitro, i.e., without the 
influences of blood volume and autonomic nerve system-induced 
inotropic response, indicating that hyperosmotic NaCl has a rapid 
and independent action on heart function and coronary circulation, 
whether in normotensive or hypertensive hearts. Our data are also in 
consistent with the previous reports that hypertonic saline enhanced 
isolated heart function and hyperosmotic mannitol or sucrose could 
increase myocardial contraction [3,15,16]. The elevated intracellular 
calcium concentration due to cell dehydration or Na+-Ca2+ exchange 
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Figure 6: Myocardial antioxidants at the end of ischemia/reperfusion with and without hyperosmotic perfusion. Hyperosmotic NaCl increased myocardial 
antioxidants dose-dependently in normotensive Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). SOD, superoxide dismutase; 
GSH, glutathione. n=7-10. *P<0.05, **P<0.01 versus respective controls.
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may be related to the positive inotropic action by hyperosmotic 
stimulation, which might involve better filling of calcium stores and 
availability for release from these stores [15-17]. 

Hyperosmotic solutions have also been found to be protective 

in myocardial injury after ischemia or hypoxia [9,11,18-21]. The 
present results showed that hyperosmotic NaCl perfusion ameliorated 
ischemia/reperfusion injury in both normotensive and hypertensive rat 
hearts, demonstrated by better recovery of heart function and coronary 
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flow and reduced myocardial CPK leakage in a dose-dependent manner. 
There were concomitant increases in several myocardial antioxidants 
including catalase, SOD and GSH in the hyperosmotic perfusion groups. 
The association of hyperosmolarity-induced myocardial protection 
with elevated antioxidants and hyperosmolarity-relevant HSP32 and 
HSP90 suggests that hyperosmotic NaCl exerts cardioprotection partly 
by enhancing myocardial anti-oxidative capacity [6,10,22]. 

The reduced coronary vascular resistance by hyperosmotic NaCl 
may also play a role in the better recovery of heart function and less 
myocardial damage. The present results that hyperosmotic NaCl 
reduced myocardial catecholamine release during reperfusion is in 
consistence with our previous findings in hypertensive hearts [9]. 
Norepinephrine is a strong factor that can induce vasoconstriction 
and myocardial ischemia. The coincidence of significant reduction in 
norepinephrine with reduced coronary resistance during reperfusion 
indicates that myocardial norepinephrine may also play an important 
role in controlling coronary blood flow and myocardial damage 
during ischemia/reperfusion. In addition to its vasoactive effect, 
norepinephrine could also accelerate cell damage by increasing 
in cellular energy demand and stimulating calcium influx into 
cardiomyocytes [23], resulting massive calcium accumulation and 
further myocardium necrosis. We have found that hypertensive 
hearts released more norepinephrine during ischemia/reperfusion 
and reduction of myocardial norepinephrine store prior to ischemia/
reperfusion preserved post-ischemic heart function [24]. The optimal 
osmolarity for reducing coronary resistance with lower norepinephrine 
in normal hearts was up to 350 mOsm/L, since higher osmolarity 
did not appreciably affect coronary flow before and after ischemia/
reperfusion injury. On the other hand, the coronary circulation 
of hypertensive hearts showing less sensitivity to hyperosmolarity 
stimulation, responding to hyperosmotic NaCl only at the osmolarity 
of 400 mOsm/L. The results demonstrate that different physiological 
and pathophysiological conditions contribute to the responses of 
cardiovascular system to hyperosmolarity.

Previous study had shown that hypertonic saline with a colloid 
solution improved myocardial circulation in sepsis [25]. Hypertonic 
perfusion was also reported to reduce myocardial injury by reducing 
edema and diminishing calcium accumulation via decreasing Na/Ca 
exchange-mediated pathway during hypoxia [19,26]. Therefore, the 
enhanced myocardial anti-oxidative capacity in hyperosmolarity-
perfused hearts and enhanced coronary vasodilation may act in concert 
to reduce myocardial injury. 

It is also interesting to find that among the proteins induced by 
hyperosmolarity, there are three vasodilation-related antioxidants, i.e., 
eNOS, HSP32 (also named as heme oxygenase, HO) and HSP90. The 
generation of NO by eNOS exerts powerful endothelium-dependent 
vasodilation, and HO also exerts vasodilation to some extent, through 
carbon monoxide (CO), one of the by-products during catalyzing 
heme. HO could also improve vascular function by enhancing NO 
bioavailability [27-29]. In addition to eNOS and HO, HSP90 plays a 
central role in eNOS-generated NO and vasodilation. Both NO and 
superoxide anion can be generated by eNOS. HSP90 associates with 
eNOS, shifts NO and superoxide anion generation by eNOS from 
NO toward superoxide anion, therefore governing vasodilation and 
reducing radical generation to prevent ischemia/reperfusion injury 
[30-32]. The present results are in consistent with our previous findings 
that cardiovascular eNOS, HO and HSP90 were up-regulated in type 1 
diabetes and non-obese type 2 diabetic rats with severe hyperglycemia 
as well as by hyperosmolarity with different osmolytes [6,7,12,33-35]. 

These hyperosmolarity-induced enzymes and heat shock proteins may 
act in concert to improve endothelium function, resulting in the well-
preserved endothelium-dependent vasodilation and elevated coronary 
flow during reperfusion after ischemia. 

In summary, hyperosmotic NaCl enhanced heart function and 
coronary blood flow in isolated normotensive and hypertensive hearts 
with and without ischemia/reperfusion injury. Hyperosmolarity up-
regulated various antioxidants including vasodilating eNOS/HO/
HSP90 and reduced coronary norepinephrine, which may be parts 
of the mechanisms underlying the hyperosmotic NaCl-induced 
cardioprotection. Since hyperosmolarity can be frequently encountered 
in both physiological and pathophysiological conditions, and a small 
volume of hyperosmotic solutions have been used successfully in shock 
resuscitation, hyperosmotic NaCl, with its prompt positive inotropic 
and vasodilating effects as well as antioxidative property, might also 
offer a safe and simple choice for the prevention of myocardial ischemia 
injury.
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