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Abstract

In order to study the effect of external ethylene on postharvest display and activity of some senescence-related
enzymes in potted miniature roses, this experiment was carried out in a completely randomized design, using three
treatment levels with three replications. In glass chambers, potted miniature rose plants were exposed to ethylene
concentrations of 0, 5 and 10 μL L-1 for 12 h. The results of study showed that the application of ethylene affected
morphological and physiological properties and activity of antioxidant enzymes, as well as laccase enzyme in treated
plants. Stress of ethylene in miniature roses caused to increase the percentage of leaf abscission and laccase
enzyme activity. Studying defensive mechanism by measuring antioxidant enzymes showed that after using stress of
ethylene activity of peroxidase enzyme was gradually decreased. Ethylene concentration of 10 μL L-1 caused to
increase activity of peroxidase enzyme in primary days after exposing to ethylene stress but enzyme activity was
gradually decreased till the final days. In other side, increasing peroxidation rate of membrane lipids under ethylene
stress condition shows plant inability to eliminate or balance oxygen free radicals. Activity of laccase in stressed
plants was increased significantly during time, concomitant with decreasing chlorophyll and proline content.
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Introduction
Miniature roses (Rosa hybrida) are well known as one of the world’s

most popular ornamental plants grown world widely as potted plants.
Postharvest display quality and life of flowers are key factors, which are
considered in acceptance of miniature rose in international marketing
trade especially for exporting to distance markets. In commercial view,
yellowing of leaf and falling leaf, flower and bud organs decrease
popularity of potted plant especially roses [1]. Ethylene, gaseous plant
hormone, has most important role in plant developmental stages as
well as regulating the aging process in plant organs. Moreover, the
plant organs are active in self-regulation of ethylene production [2].
When plants produce ethylene or are exposed to external source of
ethylene, receptors perceive ethylene and consequently the signal is
transferred, resulted in downstream genes activation. So, ethylene
induces expression of related genes involved in senescence of plant
organs, leads to changes in physiological characteristics, leaf yellowing
and organs abscission [3-4]. The main effects of external and/or
internal ethylene on potted roses include leaf yellowing and abscission,
acceleration of bud and flower shedding, flower premature aging and
decreasing of flower vase life [5]. However, response of potted roses to
external ethylene treatment is different dependent on their varieties
[4,6-7]. Some anti-ethylene agents such as 1-MCP can suppress
ethylene action by occupation of place of ethylene on receptors,
resulting in improving postharvest display of rose plants [7,8].

Changing oxidation levels are considered as important events of
environmental stresses [9]. Oxygen free radicals could act as marker
molecules in commencing and activation of defensive responses of

organisms against environmental stress [10]. It was reported that
defensive system of enzymatic and non-enzymatic anti-oxidants in
plants regulates the rate of oxygen free radicals [11]. Under stress
conditions and/or during senescence, oxidative stress is occurred along
with the loss of activity of antioxidant enzymes. The plant response to
these inferior conditions depends on their ability in regulation of gene
expression and function of resistance-related proteins [12]. Peroxidase
and copper-containing oxidase enzyme, laccase, play important roles
in polymerization of monolignols in plants [13,14]. Both enzymes were
found widely in various organisms which play several roles such as
lignifications, auxin metabolism and key roles in response to stress and
degradation reactions of hydrogen peroxide [15,16]. Peroxidase
catalyzes hydrogen peroxide reduction by receiving electron from
several donor molecules such as phenols and lignin precursors [17].
Laccase [(EC 1.10.3.2), p-diphenol: dioxgen oxidoreductases] is multi-
copper oxidases and known as blue oxidase which while reducing
oxygen molecule lead to oxidation a wide range of organic
compositions such as phenols, poly phenols and also some mineral
compositions by one-electron transportation [18]. Although it was
reported that laccase involves in improving wound, absorbing iron and
responding to stresses [19,20], it was showed that laccase gene
expressed under ethylene treatment in rose [3] and citrus leaves [21].

The aim of this research was to study the physiological response of
potted rose cv. Sanaz-e-Zard to short-term exposing to ethylene and
evaluation of laccase and peroxidase enzymes activity as well as proline
content. According to our knowledge, there is no report relating to
expression of laccase enzyme and relationship between laccase and
anti-oxidant enzymes. Due to stress condition induced by ethylene,
evaluation of anti-oxidant enzymes involved in defensive system could
shed light in physiological and bio-chemical behavior of potted
miniature rose plants to ethylene.
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Materials and Methods

Plant material and treatment
This research was conducted in a completely randomized design

with three replications and three ethylene treatment levels. After
harvesting potted miniature rose, they were placed in 200 L glass
chambers and fumigated with concentrations of 0, 5 and 10 μL L-1, at
laboratory of postharvest physiology, Department of horticultural
science, Tarbiat Modares University. To expose potted miniature roses
to ethylene, the glass chambers were hermetically sealed for 12 h and
ethylene was injected inside, while the control plants were sealed in
ethylene-free air in identical chamber.. After 12 h exposing to ethylene,
plants were placed in postharvest room under environmental
conditions of 20 ± 2°C temperature, relative humidity of 60-65%, 12 h
per day of light (15 μmol/m2/s-1). The characteristics of postharvest
display including leaf abscission, chlorophyll content, activity changes
of enzyme peroxidase and laccase, membrane lipid peroxidation and
proline in vegetative organs of potted miniature rose were evaluated
during this study. Leaves on secondary branches which were in
vegetative phase, no flowering stage were harvested in certain
distances. Data analysis was generalized by MSTAT-C statistical
software using linear model method (proc glm) where analysis was
conducted as split plot experiment in a completely random design.
Hormone was regarded as the main factor and sampling time as
secondary factor. Comparing averages based on least significant
difference (LSD) test was done in five percent probability levels
(P<0.05) and figures were drawn using Excel 2007 software.

Evaluation of display quality characteristics
The characteristics of leaf abscission [4] and leaf chlorophyll content

was measured based on suggested protocol [22]. Activity change of
peroxidase and laccase enzymes was evaluated according to Chance
and Maehly [23] and Hoopes and Dean [24]. Lipid peroxidation and
leaf proline content was evaluated by the method (Vos et al. and Bates
et al. [25,26]).

Chlorophyll content
Measuring chlorophyll was done using suggested method by

Lichtenthaler [22] where leaves sample was prepared in every
treatment and its repetition once in three days by 8 mm cork borer
about 10 samples of disc for. In this method equal number of leaf disc
samples were picked up and transported to a 2 mL tube. Then about 1
mL ethanol 80% was added to tubes containing leaf disc and then
tubes were stirred. After 10 min, solution containing leaf discs was
transferred to 15 mL falcon tubes and reached to equal volume of 15
mL by ethanol 80% and located in warm bath (Ben murray system). By
complete discoloring of disc, falcons were taken out of Ben murray.
After observing with color of rings and solving their green color in
ethanol within falcon, 1 mL of every sample was picked up and read by
spectrophotometer system.

Enzyme activity
Peroxidase (POD) enzyme: To extract the peroxidase (POD)

enzyme, 200 mg leaf tissue was homogenized in 25 mM Na-phosphate
buffer (pH 6.8) followed by centrifugation at 12000 rpm for 30 min at
4°C. For assay, a mixture consisting of 25 mM Na-phosphate buffer
(pH 6.1), 28 mM Guaiacol, 5 mM hydrogen peroxide and crude extract
was prepared and its absorbance at 470 nm was detected during 1 min

using spectrophotometer (BIO-RAD). Enzyme activity was expressed
as absorption delta of 470 nm per mg protein [23]. Quantity value of
soluble proteins was measured by Bradford method [27].

Laccase enzyme: To extract the laccase enzyme, 500 mg leaf tissue
was homogenized in 100 mM sodium acetate buffer (pH 5), followed
by centrifugation at 12000 rpm for 10 min at 4°C. The supernatant was
used to measure activity of laccase and ABTS 2 mM was selected as
precursor. Absorbance at 420 nm was detected during 1 min using
spectrophotometer (BIO-RAD). Enzyme activity was expressed as
absorption delta of 420 nm per mg protein [24]. Quantity value of
soluble proteins was measured according to Bradford [27].

Lipid peroxidation
Damaging membranes was evaluated by measuring rate of MDA as

final product of membrane lipids peroxidation. In order to measure
MDA, 200 mg leaf tissue was finely powdered in liquid-nitrogen
cooled mortar. Then prepared powder was transferred to 15 mL falcon
tube and 3 mL Trichloroacetic Acid (TCA) 10% was added. After
homogenization, samples were centrifuged at 12000 rpm, for 15 min at
4°C. Then 1 mL of solution was transferred to experiment tubes, added
1 mL Thiobarbituric Acid (TBA) 0.5% and kept in temperature of
100°C for 30 min. MDA was measured by evaluating absorption in 532
and 600 nm wavelengths using constant coefficients [25].

ΔA = ɛ × C × L

ɛ = 155 mM-1cm-1

ΔA = Absorption delta (digit of spectrophotometer system)

C: Concentration (rate) of material

L: Cuvette width (1 cm)

Proline content
Leaf tissue of 500 mg was powdered in liquid nitrogen and poured

in 10 mL of homogenized sulfosalicylic acid 10% and filtered. Acid
ninhydrin reagent was prepared by solving 1.25 g of ninhydrin in 30
mL of glacial acetic acid and 20 mL of phosphoric acid 6 M by heating
on stirrer. This reagent stays constant in 4ºC for 24 h. About 2 mL of
filtered solution reacts to 2 mL of acid ninhydrin and 2 mL of glacial
acetic acid in a tube for 1 h within 100°C bath; then this reaction was
quenched into a cold bath. Next, 4 mL toluene is added to the solution
and integrated using vortex for 15-20 s. The resulted supernatant,
being red in color, was read in 520 nm wavelength [26].

Results and Discussion
Vase life is the main postharvest characteristic of ornamental plants,

which is highly affected by ethylene in rose plants. Research on
postharvest physiology of rose cut flowers and potted plants resulted in
development of basic knowledge in the field of aging and applicable
treatments to prevent postharvest losses.

Our results showed that display quality of potted miniature rose
plants was significantly affected by ethylene. Increasing exposed-
ethylene concentration enhanced the rate of leaf abscission, as the
higher abscission was observed in 10 μL L-1 ethylene which was
significantly (P<0.01) higher than control (Figure 1).

In some plant species, vase life of flower is ended by falling flower
pieces with or without senescence [28]. Our observations showed that
falling leaf in potted miniature rose is influenced by ethylene and
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increasing concentration of ethylene gradually raised the percentage of
falling leaves. These results are inconsistent with results Ahmadi et al.
[4] and Muller et al. [29], on various potted miniature roses. Although
some studies showed that ethylene induced higher expression of
ethylene receptor genes [30,31], there are controversial reports on
expression of receptor genes under ethylene treatment in various
organs of miniature rose. Ahmadi et al. [4] reported that expression of
ethylene receptor genes (RhETR1/3) and signal transduction genes
(RhCTR1/2) was not correlated with ethylene sensitivity of the plant
genotypes.

Although ethylene has a regulative act/effect on transcription
and/or translation of expressed genes in cell separation [32], but it is
unclear that ethylene is a special inductor of separating cells and causes
to develop falling [33]. It is believed that ethylene-dependent or
ethylene-independent processes involve falling leaves. As Arabidopsis
ethylene sensitive-mutants don't need ethylene to activate process but
falling occurs in these mutants; while in mutants by late falling of
flower organs fast falling induction was shown in response to ethylene
[34].

Figure 1: The mean (± standard error) of leaf abscission of
miniature rose. Means with the similar letters in each treatment are
not significantly different (LSD 1%).

Our results showed that the lowest chlorophyll content was
evaluated at 10 μL L-1 ethylene concentration, which was significantly
(P<0.01) lower than control (Figure 2). In potted miniature rose
exposed to ethylene, the oxidative stress was induced concomitant with
decreasing activity of antioxidant enzymes, premature senescence of
leaves, and decreasing significantly chlorophyll content.

Chloroplast is one of main place of producing ROS in plants [35]
which are active in oxidative stress leading to age in cells [36].
Chloroplasts contain many proteases from which some are encoded by
senescence-related genes which are regulated during senescence. It
seems that ethylene could accelerate the ROS production in cells by
increasing the respiration rate or some catabolic reactions. It was
reported that ethylene stimulates activity of effective enzymes such as
chlorophyllase, Mg-dechelatase and peroxidase which finally lead to
degradation of chlorophyll [37]. Moreover, degradation of chlorophyll
could be related to decreasing activity of enzymes such as peroxidase,
and superoxide dismutase, although this relationship isn't completely
known [38].

Figure 2: The mean (± standard error) of Chlorophyll Content of
miniature rose. Means with the similar letters in each treatment are
not significantly different (LSD 1%).

According to Figure 3, the highest activity of laccase was
characterized in plants treated with 10 μL L-1 ethylene, which was
significantly (P<0.01) difference in comparison to other ethylene
concentrations and control too. Laccase activity in leaves was increased
under exogenous ethylene treatment of 5 and 10 μL L-1, during
running experiment; although this activity for 5 μ LL-1 was lower than
10 μL L-1 ethylene.

Laccase gene is detected in plants as a multi-gene family [39].
Analyzing of southern blot hybridization showed several copies of the
RhLAC gene in the rose species [3], similar to corn laccase that
belongs to a multi-gene family [40]. mRNA transcription level of
laccase under various stress [20], salinity stress, application of abscisic
acid was increased [41]. Application of abscisic acid resulted in
accelerating production of ethylene and organ abscission in rose flower
[30].

Expressing laccase under treatment of ethylene [3] and other stress
[20,41] seems to be related to plant defensive mechanisms in response
to pressure conditions [42].

Figure 3: The mean (± standard error) of Laccase activity of
miniature rose. Means with the similar letters in each treatment are
not significantly different (LSD 1%).
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Our results showed that the lowest activity of peroxidase was found
in plants treated with 10 μL L-1 ethylene which was significantly
(P<0.01) lower than control (Figure 4).

Activity of antioxidant enzyme and promoting antioxidant capacity
of cells are very important factors to control senescence processes [43].
Decreasing activity of antioxidant enzymes in senescence is because of
affecting RNA synthesis, which finally causes to decrease protein
synthesis and/or inactivation of enzymes [44]. Another agent affecting
the activity of antioxidant enzymes during the senescence process
could be noted to the increasing of active oxygen species attacking and
destroying antioxidant enzymes [45]. Peroxidase enzyme is considered
as the most important enzyme reflecting environmental pressures [46],
and ethylene could increase the number of reactive oxygen species,
lead to the oxidative destruction of cells.

Figure 4: The mean (± standard error) of peroxidase activity of
miniature rose. Means with the similar letters in each treatment are
not significantly different (LSD 1%).

Our evaluation on MDA content showed that the highest amount of
MDA was related to 10 μLL-1 ethylene which was significantly (P<0.01)
higher than control (Figure 5). This research revealed that rate of
inducted lipid peroxidation by ethylene stress increases in plants and
increasing concentration of malondialdehyde under ethylene stress
probably causes increasing damage of membrane. Increasing
peroxidation of membrane lipids in stress conditions showed that plant
can't destroy oxygen free radicals and inducing plant's enzymatic
defensive mechanisms against oxidative damages. Therefore using
anti-ethylene action and/or biosynthesis agents could increase anti-
oxidant capacity of plants against stress.

Similar to our results, increasing of lipid peroxidation during
senescence stage in gladiola leaves was reported which leads destroying
membrane and reduction of membrane stability [47].

Our results showed that the lowest proline content was related to 10
μL L-1 ethylene which was significantly (P<0.05) lower than control
(Figure 6). The amount of proline was decreased during time of
running experiment, especially under ethylene treatment. In contrast
to our finding, in leaves of Zantedeschia, proline significantly
increased during aging time [48]. Data suggests a positive correlation
between no proline productions and/or proline oxidation in miniature
rose.

Figure 5: The mean (± standard error) of MDA content of miniature
rose. Means with the similar letters in each treatment are not
significantly different (LSD 1%).

Producing and accumulation of proline seems to be an important
physiological response to prevent any damage and destroying of
protein, enzymes, RNA, DNA and membrane lipids [49]. In senescence
stages cell protective ability decreases against oxygen active radicals
when cell natural activities and then cell macromolecules such as
proteins will be destroyed [50]. Decreasing proline content in plants
exposing to exogenous ethylene could be related to the scavenging of
reactive oxygen species by proline oxidation under ethylene stress
conditions. Moreover, amino acids such as proline often play protective
role for chloroplast thylakoids and under pressure membrane systems
[51].

Figure 6: The mean (± standard error) of Proline Content of
miniature rose. Means with the similar letters in each treatment are
not significantly different (LSD 5%).

Ethylene stress causes to oxidative stress to plant cells by gradual
decrease of plant's antioxidant defensive capacity and photosynthesis
pigments; decreasing content of proline amino acid leads to variability
of cell structure and by increasing peroxidation of membrane lipids
causes to accelerate senescence of under-pressure plants.

In conclusion, this research was conducted to evaluate the effects of
ethylene on the vase life of miniature rose cv. Sanaz-e-Zard. The results
showed that ethylene had significant effect on the physiological and
biochemical characteristics. Exogenous ethylene treatment decreased
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the resistance capacity of tissue/organs by decreasing activity of
antioxidant enzymes and increasing peroxidation of membrane lipids.
Concomitant increase of laccase activity and leaf abscission could show
a relationship between this enzyme and senescence. This is the first
report on evaluation of laccase under ethylene and more investigation
in this case is required. Moreover, evaluation of isozymes of
antioxidant enzymes and changing their activities in order to recognize
and study antioxidant system of potted miniature rose and its behavior
in ethylene pressure conditions should be considered.
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