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Introduction 
Proteases play a colossal role in biotechnology and are widely used 

in tanning industry, in the manufacturing of biological detergents, 
meat tenderization, peptide synthesis, food industry, pharmaceutical 
industry, and in bioremediation processes [1-3]. Although protease 
can be obtained from several sources, including plant, animal and 
microorganisms, microbial proteases are preferred in view of their 
rapid growth, ease of cultivation purification and genetic manipulation. 
A large number of microorganisms have been reported for protease 
production [4-8]. 

Microbial proteases can be produced using many processes like 
solid-state fermentation and submerged fermentation [9,10]. Cultural 
conditions (physical, chemical and nutritional factors) play significant 
role in the production of extracellular proteases by microorganisms [11-
13]. Physical factors include aeration, temperature, pH and incubation 
time. In addition to these physical factors, nutritional factors such as 
the sources of carbon and nitrogen also significantly affect protease 
production.

Researchers have examined bacteria and fungi from various 
habitants to obtain suitable proteases. At present, majority of 
commercially available proteases are secreted by Bacillus spp., although 
there have been increasing reports of the potential use of proteases of 
fungal origin [14-16]. Actinomycetes as a source of naturally occurring 
extracellular protease is overlooked and information on proteases from 
actinomycetes has been limited. However, the industrial demands of 
proteolytic enzymes stimulate the search of new enzyme sources with 
extended range of applications. Among the actinomycetes, several 
species of the Streptomyces are among the most important industrial 
microorganisms because of their capacity to produce numerous 
bioactive molecules, particularly antibiotics. Streptomyces species are 
heterotrophic feeders, which can utilize both complex and simple 

molecules as nutrients. In addition to antibiotics, Streptomyces species 
liberate several extra cellular enzymes [17]. They produce variety of extra 
cellular proteases that have been related to aerial mycelium formation 
and sporulation [18]. In view of the above, the present work was under 
taken to study the effects of culture conditions on the production of 
extracellular proteases by S. albolongus and S. aburaviences, and also 
aimed at optimization of media composition, which has been predicted 
to play a significant role in enhancing the production of protease.

Materials and Methods
Microorganism

Two isolates of actinomycetes, S. albolongus (A5) and S. 
aburaviensis (RB20) were collected from the laboratory stock culture 
of the Department of Microbiology, University of Chittagong. For the 
growth and preservation of the isolates, nutrient agar was used. 

Screening of the isolate for proteolytic activity

The organisms’ ability to produce extracellular protease enzyme 
were determined by growing the isolates in solid medium containing 
protein sources like gelatin, skimmed milk casein and boiled egg 
albumin. Secondary screening of the isolates was done by measuring 
the protease activity in liquid medium by quantitative method. For 
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Abstract
Proteolytic activity of two isolates of actinomycetes, Streptomyces albolongus and Streptomyces aburaviences 

was investigated on the basis of their ability to hydrolyze skimmed milk casein, egg albumin and gelatin. Both 
isolates were found to have potential for extracellular proteases production. Effects of culture conditions for the 
production of extracellular protease from S. albolongus and S. aburaviensis were determined. Highest protease 
yield from S. albolongus was obtained after 5 days of incubation with an initial pH 7, at static state when inoculated 
in medium composed of 1% glucose, 2% beef extract, 0.2% yeast extract, 0.1% KH2PO4, 0.3% K2HPO4, and trace 
MgSO4.7H2O. Optimum incubation conditions for S. abureviences were 4 days, with an initial medium pH 8 at shaking 
condition (100 rpm). S. aburaviences preferred 1.5% lactose and 1.5% tryptone as a carbon and nitrogen source. 
Both the isolates showed maximum protease yield at 37°C. The result of the present study might be helpful for large-
scale production of extracellular protease from these Streptomyces spp.
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this purpose, the isolates were inoculated into three liquid medium, 
viz. (i) Peptone yeast extract-dextrose broth (Yeast Extract 1%, Peptone 
2%, Dextrose 2%) [19] (ii) Tryptone-yeast extract-dextrose broth 
(Tryptone 1%, Dextrose 0.1%, Yeast extract 0.5%) [20] (iii) Gelatin-
yeast extract- glucose broth (Gelatin 1%, glucose 1%, Yeast Extract 
0.2%, K2HPO4 0.3%, KH2PO4

 0.1%, MgSO4.7H2O trace) [21] at pH 7.0 
and were incubated at 35 ± 2°C for 5 days [22].

Measurement of enzyme activity

After incubation, the broth cultures were filtered with Whatman 
grade 1 filter paper. Then the filtrates were centrifuged at 8,000 rpm 
for 15 minutes at 4°C. The supernatant was used as crude enzyme. The 
enzymes were stored at 4°C with few drops of toluene/Sodium Azide 
to avoid bacterial contamination. Protease assay was done by using 
the method described by Meyers and Ahearn [23], which is a modified 
method of Hayashi et al. [24]. Briefly, 3 ml of crude enzyme, 3 ml of 
citrate phosphate buffer and 3 ml of 1% (w/v) casein was taken in a 
25 ml test tube, and the tube was placed in a water bath at 35°C for 
1 hour. Enzyme-substrate reaction was stopped by adding 5 ml of 
20% (w/v) trichloroacetic acid (TCA). After one hour, the solution 
was filtered by Whatman grade 540 (ash less) filter paper. From the 
filtrate, 1 ml enzyme-substrate mixture was taken into a test tube and 
2 ml of 20% Na2CO3 was added to it. To this mixture, 1 ml of Folin-
Ciocalteu reagent was added and the contents of the tube were mixed 
well immediately. After 30 minutes, 6 ml distilled water was added to 
the tube and absorbance of the solution was measured at 650 nm in 
a Vis-UV spectrophotometer (LaboMedInp). The amounts of amino 
acids released were determined using a standard curve plotted from 
known concentration of tyrosine. The enzyme activity was expressed 
in Unit. One unit of enzyme was defined as the amount of enzyme that 
releases 1 g of tyrosine from substrate (casein) per hour, under assay 
conditions. 

Biomass yield

The actinomycetes cultures were filtered through Whatman grade 
1 filter paper. The filter paper was dried in oven at 80°C to a constant 
weight. The amount of biomass was calculated by subtracting the 
weight of filter paper. The yield was expressed as mg/g of protein.

Optimization of culture conditions

 Broth cultures were carried out at various culture conditions such 
as temperature (10, 27, 37, 45°C), initial pH of the culture media (4, 5, 
6, 7, 8, 9), incubation time (1, 2, 3, 4, 5, 6, 7 days), to optimize the 
culture conditions for the production of extracellular proteases. To 
determine the effects of aeration, inoculated mediums were incubated 
at both stationary and shaking condition (100 rpm), keeping other 
experimental conditions at optimum.

Effects of carbon and nitrogen sources

The production of extracellular proteases under different carbon 
and nitrogen availability was studied in the liquid culture medium. 
Four carbon sources (glucose, lactose, fructose, galactose), five organic 
and two inorganic nitrogen sources (Gelatin, Yeast Extract, peptone, 
Beef Extract, Pulse, KNO3, (NH4)2HPO4,) were added to the medium, 
and the effect of this carbon and nitrogen sources on the production of 
protease was recorded. To ascertain optimum percent of carbon and 
nitrogen sources, the study was carried out with 0.5 to 2.5% carbon and 
0.5 to 2.5% nitrogen sources, keeping other experimental conditions 
at optimum. 

Results
Two isolates of actinomycetes, Streptomyces albolongus and 

Streptomyces aburaviences were tested for proteolytic activity. Primary 
screening was done by the boiled egg albumin degradation, gelatin 
hydrolysis and skimmed milk casein hydrolysis method. Both the 
isolates showed clear zone of hydrolysis in gelatin agar plate and 
casein agar plate after 3 days of incubation at 37°C (Figures 1A and 
1B). Complete degradation of egg albumin was observed after 7 and 
9 days of incubation at 37°C for S. albolongus and S. aburaviensis, 
respectively (Figure 1C). The isolates were allowed to grow in three 
liquid media and maximum enzyme activity were found in Gelatin- 
yeast extract- glucose broth and tryptone-dextrose-yeast extract broth 
for S. albolongus and S. aburaviensis, respectively (Table 1).

Effects of incubation period on the production of proteases

S. albolongus showed maximum enzyme production (789.14 U/ml)
after 5 days of incubation and highest protease production (567.99 U/
ml) by S. aburaviensis was recorded after 4 days of incubation (Figure
2). For both isolates, highest biomass yield (140 mg/g substrate for S.
albolongus and 150 mg/g substrate for S. aburaviensis) were observed
after 6 days of incubation, Table 2 associated with surface and
sedimentary growth with white sporulation in case of S. albolongus and
grayish sporulation in case of S. aburaviensis. The pH of the culture
filtrates was ranged from 5.26 to 6.14 and 6.10 to 6.90 for S. albolongus
and S. aburaviensis, respectively.

Effects of medium pH on the production of protease

Figure 3 represents the protease activities of the isolate S. albolongus 
and S. aburaviensis at different initial pH of culture medium. S. 
albolongus showed highest enzyme production (795.32 U/ml), having 
medium pH 7.0, but highest biomass yield (160 mg/g substrate) was 
recorded with medium pH 8.0 (Table 3). The pH of the culture filtrate 
ranged from 5.12 to 7.88. The isolate exhibited surface and sedimentary 

Figure 1: Photograph showing clear zone of hydrolysis A. casein hydrolysis 
by S. albolongus (A-1) and S. aburaviensis (A-2), B. Gelatin hydrolysis by S. 
albolongus (B-1) and S. aburaviensis (B-2) and C. Egg albumin degradation.

A-1 A-2

B-1 B-2 C 

Culture medium
Protease activity (U/ml)

Isolates of actinomycetes
S. albolongus S. aburaviensis

Yeast Extract 1%, Peptone 2%, Dextrose 2% 173.07 160.02
Tryptone 1%, Dextrose 0.1% Yeast extract 

0.5% 326.92 474.58

Gelatin 1%, glucose 1%, Yeast Extract 0.2%, 
K2HPO4 0.3%, KH2PO4

 0.1% MgSO4 trace 631.86 253.43

Enzyme-substrate reaction pH and temperature was 6.5 and 35°C, respectively.

Table 1: Protease activities of the isolates in different liquid medium.
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growth with white sporulation at medium pH 7.0. On the other hand, 
S. aburaviensis showed highest enzyme production (612.63 U/ml) and
maximum biomass yield (180 mg/g substrate) at pH 8.0. The pH of the
culture filtrates ranged from 5.19 to 7.93. Biomass characteristics of the
isolate were varied with the pH of the medium.

Effects of incubation temperature on production of proteases

Both S. albolongus and S. aburaviensis showed maximum protease 
production (747.24 U/ml and 619.50 U/ml respectively) (Figure 4) and 
maximum biomass yield (152 mg/g substrate and 174 mg/g substrate 
respectively), at 37°C associated with surface and sedimentary growth 
with sporulation. Table 4 represents biomass yields of the isolates 
at different incubation temperature. The pH of the culture filtrates 
was ranged from 7.10 to 7.89 for S. albolongus and 7.52 to 7.79 for S. 
aburaviensis. 

Effects of stationary and shaking conditions on the production 
of proteases

Stationary and shaking conditions have marked influence on 
protease production. S. albolongus showed maximum protease 
activity (683.60 U/ml) at stationary condition, whereas shaking at 100 
rpm significantly increased protease production (847.28 U/lm) by S. 
aburaviensis (Figure 5). 

Effects of carbon and nitrogen sources on the production of 
proteases

To investigate the effects of various carbon and nitrogen sources, 
the isolates were allowed to grow in different media containing four 
different carbon sources and five organic and two inorganic nitrogen 
sources. S. albolongus exhibited highest enzyme activity (673.76 U/ml) 
in glucose and beef extract containing media (Figure 6). Maximum 
protease (734.95 U/ml) was released when 1% glucose, and 2% beef 
extract were used as a carbon and nitrogen source in the growth medium 
(Figure 7). The strain S. aburaviensis showed maximum enzyme activity 
(484.62 U/ml) in lactose and tryptone containing medium (Figure 8). 
The isolate S. buraviensis showed maximum protease activity (571.27 
U/ml), when 1.5% lactose and 1.5% tryptone were used as carbon and 
nitrogen source, respectively (Figure 9).

Discussion
The results of primary screening indicated that both S. albolongus 

and S. aburaviensis have the ability to produce extracellular protease in 
solid medium under static incubation condition. Then the isolates were 

Figure 2: Effects of incubation period on the production of protease by S. 
albolongus and S. aburaviensis. Enzyme production was carried out in broth 
culture and incubation temperature was 35 ± 2°C, medium pH 7.0, enzyme-
substrate reaction pH and temperature was 6.5 and 35°C, respectively.
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Figure 3: Effects of medium pH on the production of protease by S. 
albolongus and S. aburaviensis. Enzyme production was carried out in broth 
culture and incubation temperature was 35 ± 2°C, enzyme-substrate reaction 
pH and temperature was 6.5 and 35°C, respectively.
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Figure 4: Effects of incubation temperature on the production of protease 
by S. albolongus and S. aburaviensis. Enzyme-substrate reaction pH and 
temperature were 6.5 and 35°C, respectively.
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Incubation Period  (in days) Biomass yield (mg/gm of substrate)
S. albolongus S. aburaviensis

1 4 12
2 40 30
3 60 36
4 80 102
5 136 134
6 140 150
7 132 121

Table 2: Effects of incubation period on biomass yield.

Medium pH Biomass yield (mg/gm of substrate)
S. albolongus S. aburaviensis

4 44 9
5 80 29
6 122 115
7 141 155
8 160 180
9 106 127

Table 3: Effects of medium pH on biomass yield.

Temperature (0°C) Biomass yield (mg/gm of substrate) 
S. albolongus S. aburaviensis

10 38 34
27 72 130
37 152 174
45 114 118

Table 4: Effect of temperatures on biomass yield.
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allowed to grow in three liquid media and maximum enzyme activity 
were found in Gelatin-yeast extract-glucose broth and tryptone-
dextrose-yeast extract broth for S. albolongus and S. aburaviensis, 
respectively. There was a gradual increase of protease production up 
to day 4 for both the isolates. Maximum production was obtained 
after 5 days of incubation for S. albolongus, and it was 4 days for S. 
aburaviensis, but maximum biomass was obtained after 6 days for 
both isolates. Maximum production of extra cellular protease after 120 

hours of incubation by Streptomyces sp. 594, which was not growth 
associated, was reported by Azeredo et al. [25]. Our results were in 
concurrence with them. 

Microorganisms are very sensitive to the concentration of hydrogen 
ions present in the medium. So, pH is one of the most important factors 
that determine the growth and the production of protease by microbes. 
S. albolongus preferred medium with neutral pH for maximum
enzyme production, but maximum protease activities S. aburaviensis
was obtained in medium having initial pH 8.0. Production of microbial
proteases in neutral and alkaline medium pH was also reported by other
authors [25-27]. Temperature is an important environmental factor for
growth and enzyme production. The best incubation temperature for
both the isolates was 37°C. A wide range of temperature (30°C-55°C)
has been reported for optimum growth and protease production by
Streptomyces sp. [13,25]. Extracellular protease from S. albolongus
was optimally produced when incubated at static condition. About
nine fold greater protease activity from Streptomyces sp. in stationary
culture than produced under shake flask condition was reported by
Gibb et al. [28]. Our finding with S. albolongus was in accordance with
them. Shaking at 100 rpm markedly increase proteases production
by S. aburaviensis. This finding was also reflected in other studies
[24,26,28,29].

Microorganisms show a considerable variation in their nutrient 
requirements. Carbon and nitrogen sources are important variables 
that affect the growth and products of microbes [30]. Many authors 
had reported variability of carbon and nitrogen sources with 
different microorganisms [31-33]. Shafee et al. [30] had reported that 
maximum protease was produced in medium containing glucose and 
beef extract, which was similar to our findings with S. albolongus. In 
case of S. aburaviensis, highest protease production was observed in 
medium containing lactose and tryptone. Both the isolates produced 
proteases in response to both organic and inorganic forms of nitrogen, 
but preferred organic nitrogen for better production. Similar result 
was reflected in other studies [22,31]. Concentration of carbon and 
nitrogen sources in the production media significantly affects protease 
[34-37]. Variability in the production of protease with different percent 
of carbon and nitrogen sources was also observed in the present 
investigation. Glucose concentration higher than 1.0 % was found to 
reduce protease yield from S. albolongus, when 2.0% beef extract was 
used as nitrogen source. In case of S. aburaviensis protease production 
was gradually increased with the increase of lactose concentration, and 
1.5% was found optimum when 1.5% tryptone was used as nitrogen 
source. 

Conclusion 
Streptomyces albolongus and Strepmyces aburaviensis are 

potential microbes for extracellular protease production, and various 

Figure 5: Effects of stationary and shaking condition on the production of 
protease by S. albolongus and S. aburaviensis. Enzyme-substrate reaction 
pH and temperature were 6.5 and 35°C, respectively.
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Figure 6: Effects of carbon and nitrogen sources on the production of 
protease by S. albolongus. Incubation period 5 days, incubation temperature 
37°C, medium pH 7.0, enzyme-substrate reaction pH and temperature 6.5 
and 37°C, respectively.
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Figure 7: Effects of percent of carbon and nitrogen sources on the production 
of protease by S. albolongus. Incubation period 5 days, incubation temperature 
37°C, medium pH 7.0, enzyme-substrate reaction pH and temperature 6.5 
and 37°C, respectively.
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of protease by S. aburaviensis. Incubation period 4 days, incubation 
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environmental and nutritional factors have significant effects on their 
growth and protease production. In the present investigation, we have 
determined the optimum conditions for maximum production of 
extracellular proteases. The optimized media composition and cultural 
conditions might be implemented in large scale for the production 
of extracellular proteases by Streptomyces albolongus and Strepmyces 
aburaviensis.
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