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Abstract
The influence of diet composition and availability on liver and antioxidant system function under sleep deprivation 

(SD) in rats is not completely known. We have previously demonstrated that chow-fed sleep-deprived rats lose 
weight and present a starvation-like metabolic and hormonal profile, accompanied by hyperphagia. On the other 
hand, liquid diet attenuates weight loss and the endocrine-metabolic effects associated to SD. It is widely known 
that energy metabolism is strongly correlated with the production of free radicals and that oxidative cell damage may 
occur. Our objective was to verify whether the two different diets offered during SD would also affect antioxidant 
defense system and liver integrity. Male rats were distributed into the following groups: control, sleep-deprived for 
96 h by the platform technique (SD-96h) or SD-96h recovered for 24 h (Rebound). Rats were fed with chow pellets 
(CP) or a liquid diet (LD). Our results show that the CP rats showed changes in antioxidant defense parameters and 
liver damage markers after SD. However, such changes were attenuated in rats fed the liquid diet. We conclude that 
the attenuated effect of LD on some studied liver damage and antioxidant defense markers lead us to suggest that 
these changes are at least partially linked to energy deficits induced by SD. 

Keywords: Liquid diet; Liver damage markers; Oxidative stress;
Sleep deprivation

Abbreviations: SD: Sleep Deprivation; SD-96h : Sleep Deprived
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Introduction
It is widely known that energy metabolism is strongly correlated 

with the production of free radicals and that oxidative cell damage may 
occur by the increased production of oxidative species as well as by the 
impairment of antioxidant defenses [1,2]. 

Sleep deprivation (SD) is thought to be a risk factor for several 
diseases. However, the physical and biochemical changes produced 
by SD and its health consequences are not completely known. Using 
an animal model, Rechtschaffen’s group characterized the response to 
long-term SD and found that it includes a progressive increase in both 
food intake and energy expenditure [3,4]. Likewise, SD induced by the 
flowerpot or platform technique also increases food intake [5] as well 
as resting oxygen consumption and the expression of the uncoupling 
protein-1 gene in brown adipose tissue [6]. 

The higher energy expenditure characteristic of SD has been related 
to mitochondrial thermogenesis, which in turn attributed to high 
expression of the uncoupling protein-2 gene in the liver and muscle 
tissue of rats deprived of sleep using the disc-over-water technique [7].

Although some evidence exists that hyperphagia could be 
overestimated by the gnawing behavior that increases during SD 
[8], recently we demonstrated that the liquid diet (LD) could favor 
hyperphagia and attenuate negative energy balance [9].

We have previously observed that SD induces energy deficits that 
were related to changes in feeding behavior and affected by the type 
of diet consumed. Regardless of the diet consumed, SD consistently 
increased animals’ glucagon levels and decreased their leptin and 
triacylglycerol levels and liver glycogen stores [8]. However, such 
changes were mostly avoided in the rats on the LD. SD induces a wide 
range of metabolic and hormonal changes that are strongly linked to the 

severity of weight loss. The LD, but not the chow pellets (CP), favored 
energy intake, consequently lessening the energy deficit induced by 
SD [8]. This difference is likely due to the easier access to food and 
inhibition of the gnawing behavior [7].

Although enhanced cellular metabolism may result in the 
production of larger amounts of reactive oxygen species (ROS) and cell 
damage, no studies verifying whether different diets affect oxidative 
stress and liver damage markers after SD have been reported. Hence, 
the present study was conducted to determine whether different diets 
could modify liver damage and antioxidant defense markers in sleep-
deprived rats. 

Methods
Animals, housing conditions and ethical care

Male Wistar rats from a colony maintained by the Department 
of Psychobiology – UNIFESP were used. These animals were derived 
from the Charles River Laboratories Inc. (Wilmington, MA, USA) 
foundation colony. Throughout the experiment, all animals were 
maintained on a 12:12-h light-dark cycle (lights on at 0700 h) under 
controlled temperature (21ºC- 24ºC) conditions and with free access 
to food and water. Animal care and use procedures were carried out by 
trained personnel (FELASA Category C) and conducted in accordance 
with the Guide for the Care and Use of Laboratory Animals. The 
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experimental protocol was approved by the Ethical Committee of 
UNIFESP (CEP no. 0064/01).

Sleep deprivation procedure
The SD procedure was an adaptation of the classical model for 

use with rodents. This method consists of placing an animal on 
top of a narrow platform (6.5 cm in diameter) surrounded by water 
in a 23×23×35 cm container [for details, see Martins et al. [10]. All 
animals were allowed to adapt to the platform for 30 to 40 min for 
three consecutive days, and SD was initiated at 0800 h after a day of 
washout. Members of the control group were individually placed in the 
same container as the sleep-deprived animals, but water was substituted 
for wood shavings. This substitution was also performed during 
the recovery period in the rebound group. Previous data from our 
laboratory indicate that this methods results in a complete elimination 
of paradoxical sleep and a 37% decrease in slow-wave sleep. Moreover, 
sleep recovery after the 96h SD protocol is characterized by an increased 
paradoxical sleep time (+184.7%) accompanied by a reduction in slow-
wave sleep (-12.2%) [11].

Experimental procedures
The SD procedure was an adaptation of the classical model for 

rodents [7,10,11]. Thirty rats were housed individually for 3 days and 
adapted to sleep deprivation procedures during this period, followed by 
a washout day. Thereafter, the animals were weighed (362.5 ± 39.8 g) 
and weight-matched cohorts were distributed into the control, sleep-
deprived for 96 h (SD-96 h), and SD-96 h recovered for 24 h (Rebound) 
groups. The sleep-deprived and Rebound groups were submitted to 96 
h of sleep deprivation while the control rats were maintained in isolated 
home-cages. After 96 h of sleep deprivation, the Rebound group was 
permitted to sleep for 24 h before sample collection. Chow pellets 
(25.3% calories as protein, 11.6% as fat, and 63.1% as carbohydrate; 
3.485 Kcal/g; Nuvilab-CR1, Colombo, Brazil) were accessible during all 
experiments.

Other thirty rats (379.9 ± 37.6 g) were adapted, weight-matched 
and assigned to groups as described above but instead of receiving 
chow pellets, they consumed a liquid diet (20.8% protein, 11.9% fat, and 
67.3% carbohydrate; 1.0 Kcal/mL; cat. #F1268; Bio-Serv, French-town, 
NJ, USA) delivered via feeding tubes (cat. #9011, Bio-Serv, French-
town, NJ, USA), accessible during all experiments from wall feeders.

After SD and rebound periods, all animals were euthanized by 
decapitation between 0700 h and 0930 h for blood and liver sample 
collection.

Analytical procedures 
Blood was collected in tubes containing pre-chilled heparin or no 

anti-coagulant (Becton Dickinson, New England, UK); the tubes were 
centrifuged at 4°C for 10 min at 3,000 rpm to extract plasma and serum 
aliquots, respectively. Liver and blood antioxidant defense markers were 
assessed as described elsewhere [12,13]. Aspartate-aminotransferase 
(AST) and alanine-aminotransferases (ALT) were measured using 
colorimetric automated procedures (ADVIA 1650, BAYER Diagnostics 
Corporation) routinely performed in clinical laboratories. Fibrinogen 
was determined using an automated blood coagulation system (Dade 
Behring, New York) that assessed plasma collected in sodium-citrate 
tubes. Interleukin-6 was determined using a rat-specific ELISA kit 
(R&D systems Inc., Minneapolis, USA). 

Statistical analysis 
The results are presented as mean ± SD unless specifically noted 

as mean ± SE. Because there was no protocol difference between the 
sleep-deprived and Rebound groups except for a day of recovery in 
the Rebound group after 96 h of sleep deprivation, we considered both 
groups together as one sleep-deprived group to compare the body 
weight and food intake. Analysis of variance (ANOVA) was followed by 
the Tukey post-hoc test with the alpha value set at 0.05. 

Results
Chow pellet experiment

Sleep deprivation affected serum markers of liver damage, including 
the enzymes aspartate- and alanine-aminotransferase. Although 
the difference in AST level did not reach statistical significance 
[F(2,27)=2.21, p=0.12], the ALT levels were increased [F(2,27)=13.59, 
p<0.0001] in the SD-96h and Rebound groups (Table 1). Hepatic 
fibrinogen [F(2,27)=6.87, p<0.01] was increased in the SD-96h group, 
although the levels of the pro-inflammatory cytokine interleukin-6 
were decreased [F(2,27)=6.40, p < 0.01] in the SD-96h and the Rebound 
groups (Table 1).

Blood antioxidant defense markers revealed no changes in catalase 
[F(2,27)=1.10, p=0.34], glutathione peroxidase [F(2,27)=1.57, p=0.22] 
and superoxide dismutase [F(2,27)=0.66, p=0.52] activities of red blood 
cells to all groups. However, these cells had a reduced concentration of 
total glutathione [F(2,27)=5.16, p<0.05] in the SD-96h and Rebound 
groups (Table 2). Reduced antioxidant defenses were observed in the 
liver in terms of lower catalase activity [F(2,27)=11.27, p<0.001] and 
total glutathione concentration [F(2,27)=12.18, p<0.001]. Hepatic 
glutathione peroxidase [F(2,27)=0.81, p=0.45] and superoxide 
dismutase [F(2,27)=0.30, p=0.73] activities were not changed by SD 
(Table 3). Correlation analyses indicated that the changes in antioxidant 

Parameters Control SD-96 h Rebound
Aspartate-aminotransferase (U/L) 259.6 ± 66.20 341.2 ± 105.01 299.9 ± 84.29
Alanine-aminotransferase (U/L)  85.7 ± 11.48 118.2 ± 16.69* 104.3 ± 13.17*
Fibrinogen (g/L)  2.15 ± 0.29  3.46 ± 1.13* 2.87 ± 0.70
Interleukin-6 (pg/mL) 239.89 ± 114.33 118.34 ± 53.47* 117.38 ± 56.85*

Mean ± SD of 10 rats per group. *Different from control group. Tukey test, p<0.05.
Table 1: Blood liver damage markers and inflammatory response in the control, 
sleep-deprived for 96 h (SD-96h) and recovery (Rebound) rats fed with regular 
chow pellets.

Parameters Control SD-96 h Rebound
Total Glutathione (umol/g Hb)  7.38 ± 1.30  6.10 ± 1.02*  5.95 ± 0.92*
Catalase (U/g Hb) 446.6 ± 117.39 496.6 ± 76.32 493.6 ± 41.39
GlutathionePeroxidase (U/g Hb) 1.49 ± 0.42  1.70 ± 0.28  1.70 ± 0.12
Superoxide Dismutase (U/g Hb) 75.06 ± 9.80  74.98 ± 23.91  82.38 ± 12.34

Mean ± SD of 10 rats per group. *Different from control group. Tukey test, p<0.05.
Table 2: Blood oxidative stress markers in the control, sleep-deprived for 96 h (SD-
96h) and recovery (Rebound) rats fed with regular chow pellets.

Parameters Control SD-96 h Rebound
Total Glutathione 
(umol/mg prot.)  3.13 ± 0.26  2.74 ± 0.28*  2.39 ± 0.33*

Catalase (U/mg prot.) 239.68 ± 53.87 163.41 ± 32.84* 157.13 ± 40.47*
GlutathionePeroxidase 
(U/mg prot.) 215.08 ± 39.51 212.35 ± 36.59 232.91 ± 41.15

Superoxide Dismutase
 (U/mg prot.) 109.85 ± 17.57 115.42 ± 15.19 112.57 ± 14.84

Mean ± SD of 10 rats per group. *Different from control group. Tukey test, p<0.05.
Table 3: Liver oxidative stress markers in the control, sleep-deprived for 96 h (SD-
96 h) and recovery (Rebound) rats fed with regular chow pellets.
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defense markers were related to an energy deficit because significant 
correlations were found between the change in body weight and each 
parameter in the liver [i.e., total glutathione (r=0.57; p<0.05) and 
catalase activity (r=0.76; p<0.05)] and erythrocytes (total glutathione; 
r=0.57; p<0.05).

Liquid diet experiment

Sleep deprivation in rats fed with a liquid diet did not affect the 
liver damage markers; the serum AST [F(2,27)=0.19, p=0.82] and 
ALT F(2,27)=2.73, p=0.07] levels did not change (Table 4). The 
markers of inflammatory response (fibrinogen F(2,27)=2.06, p=0.15 
and interleukin-6 F(2,27)=0.47, p<0.62) also remained unchanged. 
We observed only a slight, but not statistically significant, decrease 
in hepatic total glutathione concentrations in the SD-96h rats when 
compared to the controls [F(2,27)=3.69, p<0.05] (Table 4).

Discussion
Induced cell injury markers after 96 h of sleep deprivation

Serum aminotransferase levels are markers of liver damage, and a 
previous study showed that total SD is associated with increases in rat 
AST and ALT serum levels [1]; this increase has also been shown in 
humans deprived of sleep for 72 h [14]. Damaged hepatocytes release 
their contents, including ALT and AST, into the extracellular space; 
these contents ultimately enter the circulation and thereby increase 
the serum enzyme levels. These enzymes are therefore considered 
highly sensitive and specific pre-clinical and clinical biomarkers of 
hepatotoxicity [15]. Such enzymes are expressed in several tissues and 
primarily convert amino acids into gluconeogenic intermediates. ALT 
and AST catalyze the reductive transfer of an amino group from alanine 
or aspartate to alpha-ketoglutarate to yield glutamate and pyruvate or 
oxaloacetate, respectively [16]. 

Increased serum levels of ALT have been described under 
conditions associated with increased gluconeogenesis, such as fasting, 
drug-induced diabetes, a high protein diet or treatment with large 
amounts of glucocorticoids [17]. Furthermore, increased ALT activity 
indicates new enzyme synthesis rather than the release of inhibitors 
or activators in the liver [18]. Thus, increases in the catabolism of 
branched-chain and other amino acids during negative energy balance 
induces the formation and release of alanine from muscle tissue [19], 
which is a condition that may stimulate gluconeogenesis by increasing 
the metabolic pool of amino acids and result in substrate-induced ALT 
synthesis [20]. Accordingly, we found that rats deprived of sleep for 
96 h had increased levels of serum ALT (Table 1), but there was no 
such increase when a balanced liquid diet was offered (Table 4). Thus, 
increased ALT serum levels in the chow-fed rats may be related to 
increased amino acid catabolism, as reflected by the large decrease in 
body weight and reinforced by a previous description of reduced muscle 

mass [21]. Considering that AST is localized in the heart, brain, skeletal 
muscle and liver tissue and that ALT is primarily localized in the liver 
[16], we suggest that the demand for movement in the disk-over-water 
apparatus may further increase energy expenditure as compared to the 
platform method, leading to an additional increase in the AST levels [1] 
from extra-hepatic sources.

Inflammation produced by 96 h of sleep deprivation

Because of its location in the circulatory system, the liver functions 
as a center of metabolism and a center of defense. Therefore, it is not 
surprising that both functions were disturbed in association with 
the energy deficit induced by SD. The liver is a major source of acute 
phase proteins whose secretion is driven by inflammatory cytokines 
released in response to tissue damage, infection and stress. Some 
studies in humans have found increased levels of interleukin-6 after 
sleep restriction or deprivation [22,23]. However, it was observed that 
levels of interleukin-6 were decreased after 40 h of SD [24]. In our 
experiments, we found that chow-fed rats presented increased levels of 
fibrinogen after 96 h of SD (Table 1). Moreover, the increased levels of 
fibrinogen and the decreased levels of interleukin-6, which is the most 
potent and broadly effective stimulant of acute-phase proteins [25], 
suggest that another metabolic factor may account for higher acute 
protein levels during SD. Previous reports suggest that the metabolic, 
endocrine and nutritional statuses can influence the blood levels of 
acute phase response and inflammatory markers. 

Obesity is associated with an increased inflammatory response and 
high levels of pro-inflammatory cytokines and acute phase proteins, and 
weight loss programs reduce the levels of interleukin-6, among others 
[26]. It has already been shown that fat tissues are an important source 
and contribute approximately one-third of the total circulating amount 
of interleukin-6 [27]. Accordingly, animal models have also shown 
that weight loss associated with moderate stress reduces the peripheral 
expression of interleukin-6 in mice [28]. Similar to our chow-fed sleep-
deprived rats, a previous study found decreased circulating levels of 
tumor necrosis factor-α, which is another pro-inflammatory cytokine, 
after 96 h of SD using the platform technique [21]. Nevertheless, the 
stimulation of acute-phase protein synthesis requires other mediators 
because the infusion of catabolic hormones increases hepatic protein 
synthesis in vivo, but not in perfused livers [29]. Raj and colleagues [30] 
showed that amino acid infusion during hemodialysis increased the 
fractional synthesis rate of fibrinogen significantly more than without 
amino acid infusion. Therefore, because such changes to the fibrinogen 
and interleukin-6 levels were avoided in the liquid-fed sleep-deprived 
rats (Table 4), the increased production of acute phase proteins in the 
SD chow-fed rats might be the consequence of increased liver amino 
acid availability. This may be the result of increased proteolysis, as 
shown by the large weight loss and carcass protein content [21].

Repercussions in the antioxidant system after 96 h of sleep 
deprivation

There was a decrease in erythrocyte total glutathione after 96 h of 
SD, and this level remained low after recovery (Table 2). Furthermore, 
although liver total glutathione was decreased in the SD-96h and 
Rebound groups, we found no changes in the cytosolic glutathione 
peroxidase and superoxide dismutase activities in the chow-fed rats 
(Table 3). 

Our group was the first to show that SD decreases total glutathione 
concentrations in the rat hypothalamus and thalamus without changes 
in antioxidant enzymes [31,32]. Thereafter, other researchers showed 

Parameters Control SD-96 h Rebound
Aspartate-aminotransferase 
(U/L) 339.5 ± 62.85 330.0 ± 50.40 343.7 ± 83.52

Alanine-aminotransferase 
(U/L)  94.36 ± 15.48  87.94 ± 14.88  99.52 ± 15.47

Fibrinogen (g/L)  2.46 ± 0.17  2.65 ± 0.48  2.83 ± 0.37
Interleukin-6 (pg/mL) 199.12 ± 43.55 180.04 ± 78.27 147.01 ± 117.32
Liver Total Glutathione 
(umol/mg prot.)  6.04 ± 1.07  5.08 ± 0.95*  5.40 ± 1.10

Mean ± SD of 10 rats per group. *Different from control group. Tukey test, p<0.05.
Table 4: Blood liver damage markers and inflammatory response in the control, 
sleep-deprived for 96 h (SD-96h) and recovery (Rebound) rats fed with liquid diet.
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decreased activity of the antioxidant enzyme superoxide dismutase 
in the hippocampus and brainstem [33] as well as reduced liver total 
glutathione and catalase activity in the livers of sleep-deprived rats [1]. 

These data suggest that rather than inducing oxidative damage, SD 
suppresses the antioxidant defense system, which is strongly linked to 
weight loss. Reduced intakes of vitamins and amino acids from food 
can affect both enzymatic and non-enzymatic components of the 
antioxidant system [34]. This hypothesis is also partially supported 
by our observations that liquid diet-fed rats showed no changes in 
antioxidant defense markers (Table 4).

Conclusion
This study is the first to demonstrate that LD attenuates alterations 

in liver integrity and some antioxidant defense markers leading us to 
suggest that LD favored food intake, probably by inhibiting the gnawing 
behavior, consequently lessening the energy deficit induced by SD.
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