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Introduction
In recent years, the chemical modification of electrode surfaces with 

nanocomposite has emerged as a vibrant area of research especially for 
electroanalysis not only because of the unusual property combinations 
but also because of unique design possibilities. A particularly interesting 
support platform, used for electrode modification, is metal oxide and 
its nanocomposites, which have many improved characteristics i.e., 
high surface area, nontoxicity, good biocompatibility, and chemical 
stability [1-5]. Among the metal oxides, TiO2, WO3, CeO2, ZnO, 
and ZrO2 are easy to synthesize through solution-gel processes and 
also used as catalyst /photo catalyst for pollutant elimination and 
organic synthesis [6-10]. Furthermore, metal oxide composites with 
other metal nanoparticle’s such as Au, Ag, Pd, Pt and Ru etc. provide 
good catalytic properties in addition to excellent selectivity towards 
particular analyte which allow a facile fabrication of electrochemical 
sensors [11-14]. Catalytic properties of metal nanoparticles (MNPs) 
have been vigorously investigated because of their specific properties 
and enormous potential applications as nanoelectronic, photovoltaic or 
electro chromic devices and sensors [15-18]. MNPs lost the reactivity 
due to precipitation or aggregation because of their highsurface energies.
Thus, the physical properties of the nanoparticles (quantum size effects) 
diminish the resulting materials are no longer homogeneous. Both facts 
have effects the final material properties. The concert of electrochemical 
sensor mainly depends on the morphology, size and surface area of 
MNPs on the modified electrodes. In order to enhance the electro 
catalytic activity, the design of stable hybrid nanoparticles becomes one 
of the primary challenges for their applications [15]. Various stabilizing 
agents are used as carboxylic acid, sodium citrate, poly (vinyl-alcohol) 
polymer, Poly ethylene glycol, cetyltrimethylammonium bromide 
(CTBA) and 3-Aminopropyltrimethoxysiane (3-APTMS) [16-19]. 
We have reported the controlled synthesis of gold nanoparticles 
(AuNPs) having variable nanogeometry using active role of 3-APTMS 
and 3-Glycidoxypropyltrimethoxysilane (3-GPTMS) [19]. These 
nanoparticles are found to be dispersible in both aqueous and 
non-aqueous medium [20]. Accordingly it was planned to make 
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nanocomposite of titanium oxide suspension and different variable 
size of AuNPs, as such materials have shown promising practical 
applications in electrocatalysis because TiO2 nanoparticles having 
high surface area to volume ratio, ion-changeable ability, optical 
transparency, biocompatible and photocatalytic ability, environmental 
safety [12,21]. The nanocomposites of TiO2 with two sizes of AuNPs are 
reported herein.

Hydrazine is highly reactive and used as a fuel in rocket propulsion 
systems, also pesticides, blowing agents, pharmaceutical intermediates, 
and photographic chemicals [22]. Acute exposure of high level hydrazine 
shows symptoms like irritation of eyes, nose, and throat, temporary 
blindness, dizziness, pulmonary edema, and also damages the liver, 
kidneys, and central nervous system in humans [23]. All the above 
make their quantitative detection problems of considerable analytical 
interest. Among several techniques, electrochemical techniques offer 
the opportunity for low cost, highly sensitive and rapid methodologies 
for the determination of hydrazine [24]. We have demonstrated the role 
of AuNPs nanocomposite of nickel hexacyanoferrate for the analysis of 
hydrazine [25]. The present article reports on the use of TiO2-AuNPs 
nanocomposite for hydrazine sensing.

Materials and Instrumentation
All the reagent used were analytical grade including 

Titanium isopropoxide, AuCl3, 3-Aminopropyltrimethoxysilane, 
3-Glycidoxypropyltrimethoxysilane, isopropanol, HCl and hydrazine
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Where A is a constant of proportionality, h is Planck’s constant 
and ν is the frequency of incident photon. In our case, the band gap 
(Eg) of the composite solution are calculated by plotting (αhν)1/2 as a 
function of incident photon energy (hν) and linearly regressing the 
linear portion of the (αhν)1/2 to zero of the energy axis. The Figure 2a, 
2b and 2c shows the value of Eg as 3.42, 3.49 and 3.31 for TiO2, TiO2-
AuNP2 and TiO2-AuNP1 solution respectively justifying enhancement 
in catalytic behaviour of nanocomposite. Figure 3A and 3B shows 
the transmission electron microscopy (TEM) images of TiO2-AuNP2 
and TiO2-AuNP1 nanocomposite. It is cleared from images that TiO2-
AuNP2 nanoparticles are agglomerated and TiO2-AuNP1 nanoparticles 
are in a chain like network. The average particle sizes of the TiO2-AuNP2 
and TiO2-AuNP1 nanoparticles are found in the range of 20-25 nm. 
The network like morphology of TiO2-AuNP1 nanoparticles enhances 
particular performance of large surface-to-volume ratio also confirmed 
from TEM image. 

The modified electrodes of these TiO2-AuNP2 and TiO2-AuNP1 
nanocomposite are made to evaluate the electrochemical performances 
for practical applications. Figure 4a, 4b and 4c depicts the cyclic 
voltammo grams obtained for TiO2, TiO2-AuNP2 and TiO2-AuNP1 
modified GP electrodes in absences (curve A), and presence of 1 mM 
N2H4 (curve B). The results illustrates that the oxidation potential of 

hydrate, graphite powder (particle size 1–2 μm) and Nujol oil (density 
0.838) were obtained from Aldrich Chemical Co. The water used in 
experiments is double distilled-deionized water.

The absorption spectra were recorded by using a Hitachi U-2900 
Spectrophotometer. Transmission electron microscopy (TEM) studies 
were performed using Hitachi 800 and 8100 electron microscopes 
(Tokyo, Japan) with an acceleration voltage of 200 kV. Cyclic 
voltammetry and amperometry were performed on an electrochemical 
workstation CHI 660B (CH Instruments, USA) in a three-electrode cell 
configuration with a working volume of 3 mL. An Ag/AgCl electrode 
(3 M KCl saturated with Ag/AgCl) and a platinum plate electrode 
served as reference and counter electrode respectively. All potentials 
given below were relative to the Ag/AgCl. The working electrode was 
a graphite paste electrode (GpE). All electrochemical experiment were 
conducted in 0.1 M phosphate buffer solutionution (pH 7.0) containing 
0.5 M KCl.

Synthesis of TiO2, TiO2-AuNP1 and TiO2-AuNP2 
nanocomposite

The typical process of TiO2 nanoparticles synthesis involves the 
mixing of 700 µl titanium isopropoxide in 10 ml isopropanol under 
stirred conditions over a vertex cyclo mixer, followed by drop wise 
addition of 20 µl HCl (2M). The resulting mixtures were then subjected 
to peptization for 24 hours. Further, the semi-transparent solution 
was settled and the precipitate (titanic acid gel) was washed with 
double distilled-deionized water three times in order to eliminate any 
remaining acid content. The resulting gel was dried at 120°C followed 
by calcination at 500°C for 2 h. Two sizes gold nanoparticle were 
synthesized as previously described by our group [19]. The TiO2-AuNPs 
nanocomposite systems were made by mixing 5 mg TiO2 nanoparticle 
dispersed in 1ml methanol and 50 µl of AuNPred/AuNPviolet (AuNP1/
AuNP2) solution. The reaction mixtures (TiO2-AuNP1 and TiO2-
AuNP2) were then subjected to ultra-sonication for 5 min. The resulting 
suspension was dried at 50°C for 12h.

Fabrication of electrode

The electrode body used for the construction of the graphite paste 
electrode was obtained from Bioanalytical Systems (West Lafayette, IN; 
(MF 2010)). For modification of the electrode the well of electrode was 
filled with an active paste of composition as, TiO2/TiO2-AuNP1/TiO2-
AuNP2 1% (w/w), graphite powder 69% (w/w) and nujol oil 30% (w/w). 
The desired amount of modifier was thoroughly mixed and stored 
into a stoppard glass vial at room temperature. The paste surface was 
manually smoothened on a clean butter paper.

Results and Discussion
The absorbance spectra of the aqueous TiO2, TiO2-AuNP2 and 

TiO2-AuNP1 solution are shown in Figure 1a,1b and 1c respectively. 
Both nanocomposites show absorption in UV as well as in visible range 
except TiO2 suspension. The absorbance in visible range at 526 and 536 
nm justify the presence of AuNP1 and AuNP2 of red and violet color. 
The inset to Figure 1 shows the photos of TiO2, TiO2-AuNP2 and TiO2-
AuNP1 solution respectively.

The band gap of TiO2, TiO2-AuNP2 and TiO2-AuNP1 solution were 
calculated using the data of UV-Visible spectroscopy. In the parabolic 
band structure approximation, the band gap Eg and the absorption 
coefficient α of an indirect band gap semiconductor are related through 
the following well known equation [26].

αhν = A(hν-Eg)
2
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Figure 1: UV-Visible spectra of TiO2 (a), TiO2-AuNP2 (b), and TiO2-AuNP1 (c).

1.5

1.0

0.5

0.0
3.0                  3.5                  4.0                  4.5                  5.0

2

3

1

Eg / ev

(α
hv

)1/
2  / 

ar
b.

 u
nit

Figure 2: Depicts the band gap of TiO2 (1), TiO2-AuNP2 (2), and TiO2-AuNP1 
(3) as a function of incident photon energy (hν).
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N2H4 occurs at 0.56, 0.41 and 0.48 V and the corresponding to TiO2, 
TiO2-AuNP2 and TiO2-AuNP1 modified GP electrodes. The resulting 
anodic current for the same are found to be 3.24, 9.93 and 17.34 µA with 
respect to TiO2, TiO2-AuNP2 and TiO2-AuNP1 modified GP electrodes 
justifying the role of AuNPs of different nanogeometry in the TiO2 
matrix. Quantitative analysis of hydrazine was made by conducting 
amperometric measurements. Figure 5a, 5b and 5c represents the 
typical results of TiO2, TiO2-AuNP2 and TiO2-AuNP1 modified GP 
electrodes recorded at 0.4 Vvs Ag/AgCl. The corresponding calibration 
curves are shown in inset to Figure5. The electrochemical data were 
used to calculate the sensitivity which are found to be 25, 57.2 and 
145.7 µAmM-1cm-2 for TiO2, TiO2-AuNP2 and TiO2-AuNP1 modified 
GP electrodes with the lowest detection limit of 50, 100, 20nm for the 
same. A comparison on the electrocatalytic performance of the present 
systems on electro-catalytic oxidation of Hydrazine is made with those 
of earlier reported ones as given in Table1. The data (table1) reveal 
advantages of the present system as compared to that of other system.

Interference study

The influence of various species on the determination of hydrazine 
(0.1 mmol/L) was studied under optimum conditions by TiO2-AuNP1 
modified GP electrode. No interference was observed with common 
cations and anions (500-fold quantities of Na+, K+, NH4

+, CH3COO−, 
PO4

2−, SO4
2−, NO3−, CO3

2−, C2O4
2−, Ca2+ and 100-fold Mg2+, Ba2+ ions) 

and found to be less than 3.8% deviation with 10-fold quantities of 
interfering species (l -cysteine, l-tryptophan, ascorbic acid (AA), 
uric acid (UA), dopamine (DA), glucose (GO), and hydroxylamine 
(NH2OH)), indicating the present electrode has good selectivity.

Stability and reproducibility

The reproducibility and repeatability of hydrazine sensing on TiO2-
AuNP1 was determined. In a series of 10 sensors prepared in the same 
way, a relative standard deviation (R.S.D.) of 5.6% was obtained towards 
0.1 mmol/L hydrazine, indicating the reliability of the method.  A set 
of 10 different amperometric measurements for 0.1 mmol/L hydrazine 
with a single sensor yield a R.S.D. of 5.9%. The stability of the hydrazine 
sensor was explored. The proposed sensor was stored at 4°C. The 
response to 0.1 mmol/L hydrazine was tested each week within a month 
of storage, the response of the sensor only decreased by 6.3% compared 
to the initial response, which shows the long-term stability [27-36].
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Figure 4: The Cyclic voltamogramme of TiO2 (1), TiO2-AuNP2 (2), and TiO2-
AuNP1 (3) modified graphite paste electrode in absence (a) and the presence 
(b) of 1 mM hydrazine in  0.1 M phospahate buffer (pH 7.0) containing 0.5 M 
KCl.
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Figure 5: Typical amperometric responses of the TiO2 (a), TiO2-AuNP2 (b) and 
TiO2-AuNP1 (c) modified graphite paste electrode on the addition of varying 
concentrations ( 10 nM to 5 mM) of hydrazine in 0.1 M phosphate buffer, pH 
7.0 at 25 0C at 0.2 V vs Ag/AgCl. Inset shows the corresponding linear range 
of hydrazine detection.

Figure 3A: TEM image of TiO2-AuNP2 nanocomposite.

Figure 3B: TEM image of TiO2-AuNP1 nanocomposite.
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Conclusions
The studies conducted in the present investigation demonstrate the 

synthesis of TiO2 nanocomposite using two sizes of gold nanoparticles. 
AuNP1 and AuNP2 being in increasing nanogeometry are used for the 
fabrication of TiO2-nanocomposite. The as prepared nanocomposites 
e.g. TiO2-AuNP2 and TiO2-AuNP1 are used to make modified graphite 
paste electrode for sensitive sensing of hydrazine. The results clearly 
indicate that incorporation of two different size of gold nanoparticle in 
TiO2 matrix lead to significant enhancement in the oxidation response 
of hydrazine. In addition the contribution of TiO2-AuNP1 towards the 
amplification of hydrazine oxidation was found much better as compared 
to that of TiO2-AuNP2 and TiO2. The TiO2-AuNP1 nanocomposite act 
as an active material justifying excellent electrocatalytic activity, fast 
response, highly sensitivity, better lowest detection limit and promising 
application potential in electrochemical sensing.
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