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Introduction
The southern region of the USA, characterized by a humid, sub-

tropical climate, is one of the most rapidly urbanizing areas in the USA 
[1]. Between 1982 and 2007 a 79% increase (21 million acres) in the 
extent of land development occurred [1]. Over the next 30 years, Exum 
et al. [2] projected a 3 to 4 fold increase in the extent of urban land use 
in southern US states. This population growth in southern urban and 
suburban areas has resulted in increased home construction and the 
concomitant installation and establishment of landscaping in the form 
of turfgrass sod often with in-ground irrigation systems. The total area 
of irrigated lawns and landscapes in Texas is estimated at 6509 km2 
[3]. In Bryan/College Station, south central Texas, irrigated landscapes 
are typically between 464 and 929 m2 (BCS Realtors, College Station, 
TX). While turfgrass is posited the largest single irrigated crop in the 
USA [4], few studies have examined dissolved organic carbon (DOC) 
or dissolved organic nitrogen (DON) exports from this type of land 
cover. Of those studies that have examined DOC, the effect of biosolid 
amended turfgrass on runoff concentrations rather than exports was 
the primary emphasis of research [5-7]. The importance of research 
on DOC and DON exports in urban ecosystems is that it quantifies the 
loss of terrestrial organic C and N to surface waters. While these losses 
typically represent a small fraction of the terrestrial soil organic carbon 
and nitrogen pools, losses of terrestrially derived DOC affects the 
solubility and mobility of metals [8,9] and the adsorption of pesticides 
to soils [10] both of which are likely to be high in urban ecosystems. 
Furthermore, both DOC and DON have been implicated in the 
formation of disinfectant byproducts when surface water is disinfected 
for drinking water supply [11-12].

Water consumption for the purposes of landscape irrigation 
increased dramatically during summer months in a city in southern 
USA [13]. In a study examining monthly water use of more than 900 
single-family homes in Texas between 2000 and 2004, White et al. 

[13] reported that household water use more than doubled during the 
months of May, July, September and October and tripled during the 
month of August with the increased use likely in the form of irrigation. 
Observations by the authors suggested that much of the applied 
irrigation water runs off site in most sub-divisions.

Urban landscapes are typically irrigated with municipal tap 
water which originates from surface water (rivers, lakes, reservoirs), 
groundwater and, blends of these sources. Hence, the quality or 
chemistry of irrigation water varies across the nation. High Na+ 
concentrations in irrigation water has been linked to the release 
of DOC and DON from vegetation and soil at the laboratory, 
microcosm and small plot scale [14-17]. Pannkuk et al. [15] examined 
DOC and DON in leachate water under single and mixed urban 
landscape species at a small plot scale using irrigation water from 
two different municipal sources. They concluded that irrigation water 
chemistry had a greater effect on DOC and DON concentrations in 
leachate than landscape species. Steele and Aitkenhead-Peterson [17] 
examined the effect of saline and sodic irrigation waters on DOC 
and DON release from senescent urban vegetation and reported that 
irrigation water sodicity was more important for C and N leaching 
from senescent vegetation than irrigation water salinity. Holgate et al. 
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[14] reported that the chemistry of irrigation water had a significant 
effect on soil microbial community composition which may in turn 
impact nutrient cycling.

The major objectives of this study were 1) to examine the effect of 
fertilization and timing of sod installation on DOC and DON exports 
and 2) to investigate if irrigation-induced DOC and DON fluxes are 
related to Na+ inputs.

Materials and Methods

Site description

The experiment was conducted at the Texas A&M University urban 
ecology runoff facility in College Station, Texas. The facility consists of 
twenty-four (4.12 m x 8.23 m) plots constructed on prior pasture land 
with an average 3.7% slope [18]. Soil beneath the installed turfgrass sod 
was an undisturbed Boonville Series (fine, smectitic, thermic Chromic 
Vertic Albaqualf) and a Zack series (fine smectic, thermic Udertic 
Paleustalf). Topsoil of both soil series is fine sandy loam underlain by 
massive marine clay which presents a relatively impermeable barrier 
for loss of soil solution to leachate. The depth of top soil to the clay 
ranged from 0.31 ± 0.04 to 0.43 ± 0.07 m [18]. Climate in the region is 
sub-tropical with a mean annual temperature of 20°C and an annual 
average precipitation of 1,000 mm.

Two experiments were conducted; the first, from 8 Aug to 4 Sept 
2012 (August study) and the second, 12 Sept to 11 Oct 2012 (September 
study). For each experiment, St. Augustine grass (Stenotaphrum 
secundatum (Walt.) Kuntze ‘Raleigh’) sod was installed onto twelve 
34 m2 plots, arranged in a randomized complete block design, with 3 
replicates for each fertilizer treatment. One of four fertilizer treatments 
were randomly assigned to each of three replicate plots: 1) fast release 
urea applied six days after sod installed (U6), 2) slow release sulfur 
coated urea applied six days after sod installed (SCU6), 3) fast release 
urea applied 19 days after sod installed (U19), and an unfertilized 
control (UF). Fertilizer was applied at a rate of 4.9 g N m-2 for each 
factor level using a standard drop spreader. 

Irrigation events

Plots were irrigated daily at a rate of 60% of historical ETo (FAO 
Penman-Monteith) which is a commonly recommended irrigation 
practice for warm season turfgrass lawns because the crop coefficient 
for C4 turfgrass is 0.6 x reference evapotranspiration [19,20]. Small 
volume and frequent irrigation was used to prevent runoff. Once, each 
week, runoff was forced by irrigating at an average precipitation rate of 
37.6 mm hr-1 for a 20 min period delivering an average of 12.53 mm per 
irrigation event. Each plot had its own totalizing water meter to record 
the volume of irrigation water used. The volume of water applied to 
force runoff differed with turfgrass installation date (p = 0.04) and 
averaged 685 ± 12 L and 715 ± 19 L per event for the August and 
September studies respectively (Table 1).

Each plot was equipped with a 1.2 m long H flume, an Isco model 
4230 Bubbler Flow Meter, and an Isco model 6712 Portable Sampler 
(Teledyne Isco, Lincoln, NE 68504). Flow rates (L sec-1) were recorded 
at 2 min intervals. Irrigation-induced runoff volumes did not differ 
significantly (p = 0.74) with sod installation month and averaged 192 
± 53 L and 198 ± 17 L for August and September, respectively (Table 
1). The percentage of irrigation water applied and lost to runoff 
during the weekly irrigation-induced runoff events averaged 28 ± 8% 
and 28 ± 2% for the August and September studies respectively (Table 

1). In addition to the irrigation-induced runoff events (4 in August 
and 5 in September), one natural rainfall event occurred during each 
study. The August installation received 25.41 mm of rain three weeks 
into the study contributing 864 L to each plot. At four weeks into 
the September study, 68.3 mm of rain fell contributing 2,320 L to 
each plot (Table 1). The chemistries of municipal tap water used for 
irrigation and rain water and thus chemical inputs to the plots were 
quite different (Table 2).

Chemical analysis

DOC and total dissolved nitrogen (TDN) were measured using 
high temperature Pt-catalyzed combustion with a Shimadzu TOC-
VCSH and Shimadzu total measuring unit TNM-1 (Shimadzu Corp., 
Houston, TX, USA). DOC was measured as non-purgeable carbon 
which entails acidifying the sample (250 mL 2M HCl) and sparging for 
4 min with C-free air.

Ammonium-N was analyzed using the phenate hypochlorite 
method with sodium nitroprusside enhancement and nitrate-N was 
analyzed using Cd–Cu reduction. Orthophosphate-P was quantified 
using the ascorbic acid, molybdate blue method. All colorimetric 
methods were performed with a Westco Scientific Smartchem Discrete 
Analyzer (Westco Scientific Instruments Inc., Brookfield, CT, USA). 
Ca2+, Mg2+, K+ and Na+ were quantified by ion chromatography using 
an Ionpac CS12A analytical and Ionpac CG12A guard column for 
separation and 20 mM methanosulfonic acid as eluent at a flow rate 
of 1 mL min-1 and injection volume of 25 mL (DIONEX ICS 1000). 
DON was estimated as TDN – (NH4-N + NO3-N). NIST traceable and 
control standards plus replicate samples were run every 10th sample on 
all analyses. 

pH
EC Na+ K+ Mg2+ Ca2+

µS cm-1 mg L-1

Municipal Water 8.4 ± 0.1 648 ± 35 206 ± 25 3 ± 3 0.4 ± 0.1 3.0 ± 0.1
Rain Water 6.7 ± 0.3 37 ± 29 6 ± 5 1 ± 1 0.2 ± 0.2 0.8 ± 0.6

Table 2: Chemistry of municipal tap water and rain water input irrigation to the 
newly installed turfgrass plots. 

Treatment
Irrigation-Induced Rain-Induced

Input Runoff Runoff Input Runoff Runoff
L L % L L %

August

UF 685.2
(28.4)

212.6
(84.3)

30.9
(11.7) 864 550

(113)
63.7
(13)

U6 700.0
(45.0)

177.8
(72.7)

25.3
(9.7) 864 371

(321)
42.9
(37)

SCU6 682.3
(68.4)

126.8
(69.6)

19.2
(11.1) 864 180

(312)
20.9
(36)

U19 670.7
(67.6)

251.7
(97.1)

37.7
(15.2) 864 633

(142)
73.3
(16)

September

UF 714.2
(32.9)

189.2
(81.7)

26.7
(12.0) 2320 1188

(117)
51.2
(5)

U6 705.9
(37.0)

202.2
(77.2)

30.2
(9.9) 2320 1538

(370)
66.3
(16)

SCU6 697.6
(50.7)

181.1
(102.7)

26.2
(16.1) 2320 1144

(251)
49.3
(11)

U19 742.1
(46.4)

219.6
(105.8)

29.2
(13.7) 2320 1437

(320)
61.9
(14)

Table 1: Irrigation input and runoff volumes for the two turfgrass establishment 
months. Values in parenthesis are standard deviation (n=3).  Irrigation was applied 
to a depth of 16.5 mm to each plot to induce runoff. Rainfall in August was 25.5 
mm and in September 68.3 mm.  UF = unfertilized, U6 = fast-release urea fertilizer 
applied 6 days after sod installed, SCU6 = slow-release sulfur coated urea applied 
6 d after sod installed and U19 = fast-release urea fertilizer applied 19 days after 
sod installed
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Average irrigation- and rain-induced fluxes of DOC and 
DON

Average irrigation-induced fluxes of DOC ranged from 185 ± 74 
(SCU6) to 401 ± 173 mg m-2 (U19) and from 306 ± 31 (UF) to 401 ± 82 
mg m-2 (U19) for the August and September studies, respectively (Table 
3). Fertilization (p = 0.24) or month of sod installation (p = 0.15) had 
no significant effect on irrigation-induced DOC fluxes. Average rain-
induced DOC fluxes ranged from 734 ± 203 (UF) to 912 ± 135 mg m-2 

(U19) for the August study and 1775 ± 185 (UF) to 2689 ± 958 mg m-2 
(U6) for the September study (Table 3). Fertilization had no significant 
effect on rain-induced DOC fluxes but month of sod installation did 
(p < 0.05).

Average irrigation-induced fluxes of DON ranged from 14 ± 7 
(SCU6) to 22 ± 10 mg m-2 (U19) and from 9 ± 1 (UF) to 15 ± 5 mg 
m-2 (U19) for the August and September studies respectively (Table 3). 
DON fluxes were significantly affected by fertilizer type (p= 0.02) and 
month of sod establishment (p = 0.005). Average rain-induced fluxes of 
DON ranged from 30 ± 10 (UF) to 43 ± 0 (SCU6) mg m-2 in the August 
and from 90 ± 13 (UF) to 132±50 (U6) mg m-2 in the September studies 
(Table 3). 

Average irrigation- and rain-induced fluxes of base cations

August Na+ flux in runoff induced by municipal tap water 
irrigation ranged from 1007 ± 414 mg m-2 (SCU6) to 2077 ± 749 
mg m-2 (U19). K+ ranged from 61 ± 8 mg m-2 (U6) to 85 ± 22 mg 
m-2 (U19). Ca2+ ranged from 57 ± 26 mg m-2 (U6) to 107 ± 53 mg 
m-2 (U19) and Mg2+ from 14 ± 6 mg m-2 (SCU6) to 25 ± 12 mg m-2 
(U19) (Table 3). Fluxes of base cations were higher with rain induced 

Statistical analysis

Mean DOC and DON concentrations were calculated for each 
plot and runoff date and then averaged by fertilizer treatment. A time 
series of DOC and DON concentrations was constructed to illustrate 
the increases of DOC and DON over time for each fertilizer treatment 
and study.

Mean DOC and DON fluxes were calculated for a) irrigation-
induced and b) rain-induced runoff for each plot (August: n=4 
irrigation; n = 1 rain and September: n = 5 irrigation; n = 1 rain) 
(Equation 1).

( )2   C RMean Flux mg m
A

− ×
=

Where C = concentration (mg L-1), R = total runoff volume (L) and 
A = plot area (m2)

The DOC and DON flux (mg m-2) for each plot was then averaged 
by treatment (n=3). A univariate analysis of variance with fertilization 
as a fixed factor and month of sod installation as a random factor was 
used to test if there was fertilization, month of sod installation, or 
interaction of sod fertilization and month on DOC and DON fluxes.

Total DOC and DON exports (kg km-2) for the individual August 
and September studies were calculated by summing runoff event DOC 
and DON flux (municipal irrigation - plus rain-induced fluxes) for 
each plot and then averaging by treatment (n=3 plots). A one-way 
analysis of variance (ANOVA) was performed on the DOC and DON 
export data with fertilizer treatment as the dependent variable to test 
the hypothesis that fertilization had a significant effect on DOC and 
DON exports.

To examine the potential effect that pH, electrical conductivity and 
cations might have on DOC and DON fluxes, ammonium-N, Na+, K+, 
Mg2+ and Ca2+ fluxes along with pH and EC were used in backward 
stepwise multiple regression analyses to determine the best model for 
estimating DOC and DON fluxes. Eighty percent of the available data 
(August: n = 38, September: n = 48) was used to construct predictive 
models and 20% of the data used as a test set to test the predictive 
models (August: n = 9, September: n = 12). 

All statistical analyses were completed with SPSS v.22 (IBM Corp., 
Armonk, NY, USA).

Results 
DOC and DON concentrations in runoff

DOC concentrations in the August installation runoff events 
ranged from 20.5 to 27.3 mg L-1 in and 25.3 to 30.9 mg L-1 in September 
for the first runoff event. Rain events midway through each study 
diluted the concentrations somewhat but by the last runoff event 
DOC concentrations in runoff had significantly increased three- to 
four-fold to 72.0 to 78.1 mg L-1 in the August study (p < 0.0001) and 
to 106.7 to 120.3 mg L-1 in the September study (p < 0.0001) (Figure 
1A and B). DON concentrations did not show a similar pattern to 
DOC concentrations for all fertilizer treatments and appeared instead 
to be affected by fertilizer type and timing (data not shown). DON 
concentrations in the first runoff event ranged from 1.1 to 1.6 mg L-1 
in the August study and from 1.5 to 1.9 mg L-1 in the September study. 
The rain events diluted DON concentrations in the August study but 
increased DON concentrations in the September study. During the last 
runoff event DON concentrations in the August study ranged from 2.6 
to 5.0 mg L-1 and in the September study ranged from 1.4 to 1.6 mg L-1.

Figure 1: Time series of DOC concentrations for A) August study and 
B) September study. UF = unfertilized, U6 = Urea applied 6 days after turf 
installed, SCU6 = sulfur-coated urea installed 6 days after turf installed and 
U19 = Urea applied 19 days after turf installed.
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runoff; Na+ ranged from 2018 ± 35 mg m-2 (U6) to 2514 ± 609 mg m-2 
(U19) and K+ from 122 ± 2 mg m-2 (U6) to 208 ± 0 mg m-2 (SCU6). 
August fluxes for Ca2+ ranged from 113 ± 0 mg m-2 (SCU6) to 143 ± 
48 mg m-2 (U19) and Mg2+ from 27 ± 0 mg m-2 (SCU6) to 35 ± 12 mg 
m-2 (U19) (Table 3).

For the September installation flux in runoff induced by municipal 
tap water irrigation Na+ ranged from 1293 ± 218 mg m-2 (UF) to 1581 
± 395 mg m-2 (U19). K+ ranged from 48 ± 7 mg m-2 (UF) to 79 ± 23 mg 
m-2 (SCU6). Ca2+ ranged from 61 ± 5 mg m-2 (UF) to 75 ± 18 mg m-2 
(U19) and Mg2+ from 15 ± 2 mg m-2 (UF) to 19 ± 4 mg m-2 (U19) (Table 
3). Fluxes of base cations were also higher in the September installation 
with rain induced runoff; Na+ ranged from 3309 ± 901 mg m-2 (SCU6) 
to 5048 ± 1527 mg m-2 (U6) and K+ from 231 ± 60 mg m-2 (SCU6) to 
286 ± 50 mg m-2 (U19). September fluxes for Ca2+ ranged from 199 ± 60 
mg m-2 (SCU6) to 305 ± 121 mg m-2 (U6) and Mg2+ from 45 ± 13 mg m-2 
(SCU6) to 69 ± 22 mg m-2 (U6) (Table 3).

Total exports of DOC and DON

One extra irrigation runoff event and a large rain event occurred 
in the September study which increased total DOC and DON exports 
(irrigation plus rain induced runoff) relative to the August study. Total 
DOC exports were 2036 ± 803 kg km-2 in August and 3341 ± 227 kg 
km-2 in September for the unfertilized plots (Figure 2A). Highest DOC 
export was from the U6 treatment in September (4556 ± 1142 kg km-2) 
and lowest DOC export was from the SCU6 treatment in August (1023 
± 735 kg km-2). Fertilization had no significant effect on total DOC 
exports (p = 0.29).  

DON exports were 99 ± 43 kg km-2 in August and 134 ± 15 kg 
km-2 in September for the unfertilized plots (Figure 2B). Highest DON 
export was from U19 in September (195 ± 59 kg km-2) and lowest DON 
export was from SCU6 in August (73 ± 55 kg km-2). Fertilization had no 
significant effect on total DON exports (p =0.18) (Figure 2). 

Irrigated with Municipal Tap Water
UF U6 SCU6 U19

Aug Sep Aug Sep Aug Sep Aug Sep
pH 8.6 ± 0.1 8.6 ± 0.0 8.6 ± 0.1 8.6 ± 0.0 8.5 ± 0.0 8.6 ± 0.0 8.6 ± 0.0 8.7 ± 0.0

EC (µS cm-1) 1416 ± 42 1265 ± 5 1437 ± 167 1262 ± 9 1466 ± 84 1278 ± 18 1473 ± 111 1308 ± 35
DOC (mg m-2) 320 ± 149 306 ± 31 280 ± 54 364 ± 36 185 ± 74 307 ± 78 401 ± 173 401 ± 82
DON (mg m-2) 16 ± 8 9 ± 1 18 ± 5 11 ± 3 14 ± 7 10 ± 2 22 ± 10 15 ± 5
Na+ (mg m-2) 1726 ± 686 1293 ± 218 1589 ± 168 1430 ± 137 1007 ± 414 1332 ± 353 2077 ± 749 1581 ± 395
K+ (mg m-2) 71 ± 33 48 ± 7 61 ± 8 57 ± 9 76 ± 36 79 ± 23 85 ± 22 78 ± 16

Mg2+ (mg m-2) 20 ± 10 15 ± 2 18 ± 3 18 ± 2 14 ± 6 16 ± 4 25 ± 12 19 ± 4
Ca2+ (mg m-2) 85 ± 45 61 ± 5 75 ± 8 72 ± 8 57 ± 26 64 ± 16 107 ± 53 75 ± 18

Irrigated with Rain Water
UF U6 SCU6 U19

Aug Sep Aug Sep Aug Sep Aug Sep
pH 8.0 ± 0.1 8.0 ± 0.0 8.0 ± 0.1 8.0 ± 0.1 7.8 ± 0.0 7.8 ± 0.0 7.9 ± 0.0 8.0 ± 0.1

EC (µS cm-1) 562 ± 77 595 ± 19 575 ± 46 544 ± 46 606 ± 0 500 ± 48 595 ± 19 570 ± 12
DOC (mg m-2) 734 ± 203 1775 ± 185 831 ± 102 2689 ± 958 813 ± 0 1834 ± 603 912 ± 135 2261 ± 790
DON (mg m-2) 30 ± 10 90 ± 13 31 ± 0 132 ± 50 43 ± 0 91 ± 32 35 ± 4 116 ± 35
Na+ (mg m-2) 2100 ± 694 3804 ± 378 2018 ± 35 5048 ± 1527 2053 ± 0 3390 ± 901 2514 ± 609 4704 ± 1234
K+ (mg m-2) 145 ± 58 228 ± 56 122 ± 2 268 ± 98 208 ± 0 231 ± 60 172 ± 30 286 ± 50

Mg2+ (mg m-2) 29 ± 17 49 ± 5 28 ± 2 69 ± 22 27 ± 0 45 ± 13 35 ± 12 61 ± 13
Ca2+ (mg m-2) 118 ± 76 211 ± 25 116 ± 3 305 ± 121 113 ± 0 199 ± 60 143 ± 48 270 ± 54

Table 3: Average pH, electrical conductivity (EC) and fluxes (mg m-2) of DOC, DON, and cations from municipal tap water irrigation-induced and rain-induced runoff during 
August and September sod establishment. ± = standard deviation. Treatments are UF = Unfertilized, U6 = Fast-release urea applied 6 days after sod installed, SCU6 = 
Sulfur-coated urea applied 6 days after sod installed and U19 = Fast release urea applied 19 days after sod installed.

Figure 2: DOC and DON exports from newly installed turfgrass plots.  The 
August and September studies ran for one month each.  Exports are the result 
of 4 irrigation and 1 rain event in August and 5 irrigation and 1 rain event in 
September.  Error bars are standard deviation and show the variance among 
plots for each fertilizer treatment (n=3). UF = unfertilized, U6 = Urea applied 6 
days after turf installed, SCU6 = sulfur-coated urea installed 6 days after turf 
installed and U19 = Urea applied 19 days after turf installed.
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Models of DOC and DON fluxes from newly installed turfgrass 
sod

Individual models were produced for the estimation of DOC 
and DON fluxes from turfgrass for the two sod installation dates. 
Ammonium-N, Na+ and Ca2+ were important for the estimation of 
DOC flux in August (R2 = 0.88; p < 0.001) and Na+ and Mg2+ important 
for its estimation in September (R2 = 0.56; p < 0.001). For DON, 
Ammonium-N, Na+, K+ and Ca2+ in August (R2 = 0.86; p < 0.001) and 
ammonium-N, Na+ and Mg2+ in September (R2 = 0.79; p < 0.001) best 
estimated DON fluxes (Table 4) Examination of observed vs. estimated 
DOC fluxes showed that for a the August test group, DOC was 
estimated extremely well (R2 = 0.88; p < 0.001) but the September test 
group was not (R2 = 0.69; p < 0.001) due to an over-estimation of lower 
DOC fluxes (< 400 mg m-2) (Figure 3A). For DON fluxes, the August 
test group showed some scatter due to under and over-estimations (R2 
= 0.40 p < 0.05) but for the September test group DON was estimated 
well (R2 = 0.85; p < 0.001) (Figure 3B). 

Discussion
Population growth in southern cities of the USA is increasing [1] 

and with this increase comes the need for new construction of homes, 
schools, hospitals and commercial enterprises all of which have green 
space, typically in the form of turfgrass. Turfgrass sod is the preferred 
means of establishing lawns because a lawn can be established quickly 
thus avoiding soil erosion. Ephemeral or intermittent streams are 
common in urban areas of southern sub-tropical states and would 
typically only flow during a rain event, however with landscape 
irrigation, many of these flow during the summer months fed by mainly 
turfgrass runoff. As landscape runoff meets an impervious surface such 
as a road of parking lot it is quickly lost to storm drains to enter the 
nearest stream channel.

In rural and urban surface waters in south-central Texas DOC 
and DON concentrations ranged from 20.4 to 52.5 mg C L-1 and 0.6 to 
1.9 mg N L-1 [21] and were similar to the concentrations found in the 
irrigation induced runoff of this study (DOC: 20-31 mg L-1; DON: 1.1-
1.9 mg L-1). An ephemeral stream draining a golf course in Michigan 
reported annual average dissolved organic matter (DOM) at 21.6 mg 
L-1[22]. Other studies of DOC in urban surface waters have reported 
lower DOC concentrations; for example a study of an urban and 
forested stream in Florida reported mean annual urban surface water 
DOC concentrations of 13 mg L-1 compared to forest surface water 
concentrations of 26 mg L-1 [23]. Research by Beasley [24] examined 
soil pore water DOC in newly created urban soil in Scotland, UK and 
reported similar DOC concentrations (range: 10 to 100 mg L-1) at 15 

cm depth as found in our study. Their soils maintained high DOC 
concentrations (approximately 50 mg L-1) for the two years of their 
study [24].

Effect of Na+ on DOC and DON fluxes 

Strong and significant relationships between aquatic or soil DOC 
and DON concentrations and Na+ or the sodium adsorption ratio (SAR) 
have been reported [14,16,17,21]. However these previous studies did 
not fully account for the mechanisms that might be responsible for 
causing DOC and DON release to solution. The relationship between 
soil DOC and DON losses and Na+ has been researched at the laboratory 
scale in several past studies. For example, Fettig and Sontheimer [25] 
suggested that Na+ exchange with Ca2+ on soil exchange sites effectively 

 Constant NH4-N Na+ K+ Mg2+ Ca2+ R2 SEE F Significance
August 

DOC -37.936
(24.595)

0.923
(2.145)

0.314
(0.023) - -

-2.049
(0.298) 0.88 67.07 81.26 <0.001

DON -0.75
(1.81)

1.867
(0.42)

0.016
(0.002)

-0.99
(0.058)

- -0.058
(0.033) 0.86 5.40 55.54 <0.001

September 

DOC 6.133
(64.18) - 0.511

(0.085) - -23.22
(7.08) - 0.56 178.43 28.27 <0.001

DON 2.016
(1.43)

0.174
(0.20)

0.13
(0.002) - -0.58

(0.18) - 0.79 3.86 46.42 <0.001

Table 4: Constants, coefficients and standard error derived from backward stepwise multiple regression analysis for the estimation of test set DOC and DON fluxes in 
irrigation-induced runoff from St. Augustine turfgrass established in August and September.  Data were pooled across each fertilizer level (n=3 per treatment within each 
sod establishment month). There were 4 irrigation events for the August installation and 5 irrigation events for the September installation. SEE is standard error of the 
estimate. Values in parenthesis are standard error.

Figure 3: Observed and predicted irrigation exports of A) DOC and B) DON 
for a test set of 20% samples (August n = 9; September n = 12) based on the 
predictive models generated using the coefficients in Table 4 for August (white 
circles) and September (black circles) studies. 
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solubilizes soil organic matter fixed in calcium complexes. Na+ was also 
shown to effectively initiate the disaggregation of immobile aggregates 
into mobile colloids [26]. These readily soluble organic salts have no 
ability to form inter- or intra-molecular bridges [25]. Furthermore, 
Na+ has the ability to remove divalent bridges between clay mineral 
surfaces and organic anions [27]. More recently, while examining 
the potential reasons for increased DOC in surface waters in Canada, 
Kerr and Elmers [28] reported that declining Ca2+ in soil solution 
resulted in equilibrium DOC increasing, indicative that changes in 
DOC adsorption on exchange sites may be caused by cation bridging 
or the lack thereof. A recent study in California examined the use of 
wastewater effluent as an alternative irrigation water source for urban 
landscapes and concluded that pH, SAR and DOC of wastewater was 
high enough to reduce soil infiltration rate and aggregate stability in 
soils [29] Thus, based on this prior research on the interaction between 
Na+ and organic matter and the results from our study, we suggest that 
the major mechanism of DOC and DON release from urban landscapes 
irrigated with high Na+ municipal water is likely to be a combination of 
Na+ exchange with cations on soil exchange sites, followed by calcium-
DOC decomplexation and a consequential displacement of adsorbed 
organic DOC and DON from soil exchange sites to pore water. The 
reduction in a soils infiltration rate, caused in part by lower aggregate 
stability and high clay dispersion will result in greater runoff from 
urban landscapes.

Examination of the use of cations to estimate DOC and DON 
fluxes from turfgrass we found that Na+ flux was an important ion in all 
of our models as it was strongly and significantly positively correlated 
to DOC and DON in the August study (DOC: R = 0.84; DON: R = 0.72) 
and moderately but significantly in the September study (DOC: R = 
0.67; DON R = 0.66). We believe that the positive correlations between 
DOC with other cations (NH4

+, K+. Mg2+ and Ca2+) is a result of their 
loss from soil exchange sites due to their replacement by Na+.

Municipal water and alternative water for irrigating landscapes

As the scarcity of potable water available for irrigation of urban 
landscapes increases in southern US states due to higher demand 
and climate change, municipalities will have to utilize reclaimed 
water such as treated sewage effluent to irrigate landscapes [30]. 
Na+ concentrations in effluent can be almost six-times higher than 
in the municipal water supplied for potable use [31]. In a study 
comparing the effect of different irrigation water chemistries on 
vegetables, the Na+ concentration in potable water was 25 mg L-1 
while in sewage effluent it was 143 mg L-1 [31]. Devitt et al. [32] used 
recycled sewage effluent for turfgrass irrigation in Las Vegas, USA 
and reported that of the Na+, Ca2+ and Mg2+ applied in irrigation 
water,70% Na+ and 200% Mg2+ was leached from a sandy-loam soil 
and 35% Na+, 50% Mg2+ and >100% Ca2+ was leached from a loamy-
sand soil. Our base cation imports and exports displayed a similar 
pattern with Na+ highly retained during irrigation compared to 
other cations (Table 5). Of the K+, Mg2+ and Ca2+ added in irrigation 
water release of these ions was 48, 35 and 31% respectively whereas 
91% of Na+ added in irrigation water was retained and only 9% 
released (Table 5). The story was very different during rain events 
when most of the cations retained during irrigation events were 
lost to runoff (Table 5). This study used ground-water sourced 
municipal water for turfgrass irrigation. While not every city will 
have municipal water so high in Na+, we felt the study illustrated 
the losses of organic C and N from turfgrass and its underlying soil 
should an alternative water source high in Na+ was used.

Expansion of exurban landscapes

Exurban landscapes are expanding in the USA [33]. Theobald [33] 
states that the developed footprint has increased at roughly 1.6% per 
year between 1980 and 2000 with expectations of an increase of 14.3% 
by 2020. At a local scale, permits for new single-family home builds in 
Bryan College Station totaled 12,345 between 2000 and 2014 (http://
www.city-data.com/city/College-Station-Texas.html and http://www.
city-data.com/city/Bryan-Texas.html) and with an average lot size of 
700 m2 we can extrapolate from our study losses of 196-255 g m-2 DOC 
and 7.7-12.6 g m-2 DON from each individual lot during the month 
after late summer-early fall sod installation if recommended irrigation 
practices of 60% ETo and fertilization 6 days after sod installation are 
met. While there are benefits of irrigated landscapes, a more practical 
approach would be to use best management practices such as deficit 
irrigation [34] and cycle irrigation to limit both soil Na+ accumulation 
and overall runoff volumes [35]. To counteract the high Na+ in our 
irrigation water we now apply gypsum annually at a rate of 8.3 kg for 
each 34 m2 plot.

Conclusions
•	 Installation and irrigation of turfgrass sod with high Na+ 

municipal tap water promoted significantly higher DOC 
concentrations in runoff over time.

•	 Replacement of soil cations by Na+ on soil exchange sites in 
irrigated lawns might be in part responsible for increasing 
DOC concentrations and fluxes in urban surface waters.

•	 DOC fluxes during irrigation events were not significantly 
affected by fertilizer type or installation month.

•	 DON fluxes during irrigation events were significantly affected 
by fertilizer type and installation month.
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