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Abstract

P-glycoprotein (P-gp) is a multispecific transporter which has a natural detoxification role. The inhibition of
substrate transport by P-gp can be presented by a number of parameters, including percentage inhibition and IC50.
Inhibition constant, Ki, is believed to be a more universal parameter allowing easy comparison of data from different
substrate conditions. The aim of this investigation was to use molecular descriptors of the inhibitors, docking scores,
and the parameters of the probe substrate for the development of Quantitative Structure-Activity Relationships
(QSARs) for the prediction of P-gp inhibition constants. QSARs were developed using a number of data mining and
pre-processing feature selection methods. A chi-square based regression tree followed by a boosted trees model
were the most accurate in the estimation of Ki. The selected models incorporated molecular descriptors of the
inhibitors followed by the molecular descriptors of probe substrates, whereas no docking scores were selected by
the models. Potent P-gp inhibitors showed higher lipophilicity and molecular weights than those molecules defined
as drug-like.

Graphical abstract

Keywords: P-glycoprotein; QSAR; Docking; Inhibitor; Substrate

Abbreviations:
BT: Boosted Trees; CART: Classification and Regression Tree;

CHAID: Chi-square Automatic Interaction Detector; I-tree: Interactive
Tree; MARS: Multivariate Adaptive Regression Splines; MDR:
Multidrug Resistance; P-gp: P-glycoprotein; QSAR: Quantitative

Structure-Activity Relationships; RF: Random Forest; RT: Regression
Tree

Introduction
One in four deaths in the United States is due to cancer and recently

the American Cancer Society reported a total of 1,660,290 new cancer
cases and 580,350 cancer deaths are projected to occur in the United
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States in 2013 [1]. The failure of cancer treatment can be attributed to a
variety of different pharmacological and clinical reasons; but one
major cause of the treatment failure is Multidrug Resistance (MDR) to
chemotherapeutics [2]. MDR mechanisms can result in resistance to a
number of structurally and functionally unrelated chemotherapeutic
agents. The MDR behaviour is mainly linked to the activity of
transmembrane efflux pumps such as P-glycoprotein 1 (P-gp/ABCB1),
breast cancer resistance protein (BCRP/ABCG2) and multidrug
resistance-associated protein 1 (MRP1/ABCC1), which are members
of ATP-Binding Cassette transporter family [3]. P-gp, also known as
multidrug resistance protein 1 (MDR1), is a well-studied glycoprotein
that demonstrated its function as a transporter of hydrophobic drugs,
lipids, steroids and metabolic products [4].

Apart from its role in multidrug resistance, P-gp has a profound role
in pharmacokinetics, affecting drug absorption, distribution and
excretion [5]. It is found in high amounts at the apical surface of
epithelial cells lining the colon and small intestine and in hepatocytes,
pancreas ductules, proximal tubules in kidneys and the adrenal gland
[6,7]. P-gp is also known to play a major role in transporting
compounds out of the brain in the blood brain barrier [8]. In the BBB,
only suitably lipophilic compounds can diffuse across the endothelial
cells and enter the brain. However, a high proportion of P-gp that
surrounds this area of the brain prevents their accumulation by
distributing substrates back into the blood circulation [8]. In the
gastrointestinal tract and in hepatocytes, P-gp is responsible for the
efflux of drugs back into lumen/bile, thus reducing the bioavailability
of substrate drugs [9]. Similarly, in kidneys, P-gp is located primarily
in glomerular mesangium cells and the apical membrane of proximal
tubule epithelia and plays a significant role in the tubular secretion of
organic cations [9].

Substrates of P-gp can have molecular weights ranging from
250-1850 Da, different ionization states, acid/base properties,
hydrophobicities or amphipathic properties [10]. There are drugs and
herbal products that can affect the function of P-gp transporters and
the number of drugs that are found to be the P-gp substrates is
continuously growing. For instance, rifampin (an antituberculosis
drug) induces the intestinal expression of P-gp [11]. Due to the broad
substrate specificity, drug-drug interactions involving P-gp are very
likely [5]. Drug-drug interaction is an important issue observed in
cancer patients, especially because they often receive multiple
medications concurrently with complex chemotherapy regimens [12].
Due to the potential significance of P-gp in drug interaction, the FDA
has urged that every new molecular entity should be routinely checked
for possible interactions with P-glycoproteins [13].

Overexpression of P-gp in cancer cells contributes significantly to
the resistance of cancer cells against chemotherapeutic agents [14]. P-
gp is able to export a number of structurally diverse anticancer agents
including anthracyclines, epipodophyllotoxins and vinca alkaloids. As
a result, P-gp has been suggested as a viable target for inhibition in the
treatment of MDR cancer [15]. Drugs such as actinomycin-D and
azithromycin can strongly block the P-gp and limit the efflux of P-gp
substrates. Inhibitors that block the transport of chemotherapeutics or
other compounds may act as competitive or non-competitive
inhibitors [16]. In recent years, the inhibitory activity against P-gp has
been tested in many compounds in order to overcome P-gp mediated
resistance of cancer cells to the chemotherapeutics [17].

Given the clinical relevance of P-gp, it is important to elucidate the
mode of interaction with the ligands of this enzyme. Higginis and
colleagues proposed the "hydrophobic vacuum" model to explain the

polyspecificity of P-gp [18]. In the proposed model, the hydrophobic
substrates enter the transmembrane domain of P-gp and are
transported outside the cell. A recent study by Aller et al. [19] provided
a detailed structural description of mouse P-gp, which indicates a
substantial internal cavity comprising mostly hydrophobic and
aromatic residues. Despite the substrate promiscuity, several studies
have been valuable in identifying structure activity relationships for the
modulators. Evidences from x-ray crystallography, [19]
chromatography [20] and several biochemical techniques [21,22]
suggest the presence of multiple substrate-binding sites and inhibitory
mechanisms, which may be the cause of substrate promiscuity. As a
result, it may be necessary to generate more than one pharmacophore
for P-gp, one for the inhibitors of each probe substrate [23]. Similarly,
structure-activity relationships may be different for the inhibition of
efflux of different substrates, or different inhibition mechanisms. Using
IC50 as the measure of inhibition potency is the other additional reason
for the need for different models for P-gp inhibition when different
substrates and/or substrate conditions have been used for IC50
measurement. The use of IC50 (concentration of inhibitor required for
50% inhibition) has the disadvantage of not allowing data from
different substrate conditions to be compared easily. Unlike IC50, the
inhibition constant, Ki, is a more universal parameter that is
standardised according to the substrate concentration and Km values
[24].

The first aim of this investigation was to use, several data mining
techniques to enable development of universal models for the
prediction of P-gp inhibition constant (Ki). In particular, Classification
and Regression Tree (CART) is a powerful decision tree technique that
can select significant features for partitioning of the data. The use of
molecular descriptors for the substrates in addition to the inhibitor
parameters can be useful for splitting Ki data if the substrate type has
an effect on the measured Ki values. The second aim examined,
docking scores as a complementary parameter to investigate the
significance of interaction energy between the inhibitors and P-gp in
the models for the estimation of the binding constants.

Methods

Dataset
IC50 and Ki values for P-gp inhibitors were collated from the

literature [23,25-47]. IC50 values of P-gp inhibitors were used to
calculate the Ki values using the Cheng-Prusoff equation below.�� = ��501 + [�]��  (1)

In this equation, [S] is the substrate concentration and Km is the
Michaelis-Menten constant for the substrate (the concentration of
substrate at which enzyme activity is at half maximal). Km values for
the substrates not reported in the publication were obtained from the
authors through personal communication. The rationale behind
converting the IC50 values to Ki values is that the Ki is a more universal
scale, which, in theory, should be independent of the substrate used.

In case there were several IC50/Ki values available for a single
inhibitor from different sources, the average Ki values were used,
unless the probe substrate was different. If there was a significant
difference in the reported IC50/Ki values, we contacted the authors to
find out if they could provide an explanation for the observed
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differences before using the reported values. In total, the dataset
consisted of Ki values for 219 unique inhibitor/substrate pairs, with
data measured in different cell systems, including human colon
carcinoma cell line (Caco-2), Madin-Darby canine kidney cells
(MDCK)-MDR1, MDCK II-MDR1, K562-MDR, MDR1 transfected
LLC-PK1 and P388 lymphoma cells. Caco-2 and MDCK was the most
common cell lines used in our dataset. The inhibitors in the dataset are
from different chemical/pharmacological classes, such as anticancer
and anti-HIV agents, statins, antiretrovirals, cephalosporines,
ergopeptides, antipsychotics, opioids, NSAIDs, analgesics, and
antiarithmetic drugs. The dataset is presented in the Supporting
Information I.

Molecular descriptors
Molecular descriptors were calculated for the inhibitors and the

substrates using ACD Labs/LogD Suite version 12 (Advanced
Chemistry Development, Inc. Ontario, Canada), TSAR 3D version 3.3
(Accelryls Inc. San Diego, CA), MOE version 2011.10 (Chemical
Computing Group Inc. Montreal, Canada) and Symyx QSAR software
(Accelryls Inc. San Diego, CA). The fractions of compounds that are
ionised at pH 7.4 as acid (FiA), as base (FiB), or (for zwitterionic
compounds) as acid and base (FiAB), and the fraction unionised (Fu)
were calculated from the lowest acidic and the highest basic pKa values
[48].

P-gp-ligand docking
Docking energy for all inhibitors was calculated using MOE

software and was used as an additional molecular descriptor for the
inhibitors. For docking, the x-ray structure of mouse P-gp was
obtained from the protein data bank (PDB code 3G60) [http://
www.rcsb.org]. The use of this PDB structure was due to a previous
docking investigation that showed better scoring poses using mouse
3G60 structure in comparison with the other two mouse P-gp
structures (PDB codes: 3G61 and 3G5U), or the human homology
model of P-gp [49]. Moreover, it has been shown from BLAST
alignment studies that human and mouse P-gps have 87% overall
sequence identity and 100% identity within the binding cavity with the
exception of mouse Ser725 and human Ala729 [50]. It should be noted
that 3G60 structure of mouse P-gp was co-crystalised with a ligand and
the complex had two stereo-isomers of cyclic hexapeptide inhibitors,
cyclic-tris-(R)-valineselenazole (QZ59-RRR) and cyclic-tris-(S)-
valineselenazole (QZ59-SSS) in the active site [19]. The protein was
protonated and protonatable residues were titrated using the default
software parameters. For the ligands, following the atomic charge
calculation using SCF optimization (AM1 Hamiltonian), molecular
structures of the ligands (P-gp inhibitors) were optimised. In enzyme-
ligand docking, default parameters of the software were used for ligand
interactions. These are energy cut-off for H-bond and ionic
interactions of -0.5 kcal/mol and maximum distance for non-bonded
interactions of 4.5 Å. In the MOE dock panel, the placement method
was Triangle Matcher, the scoring methodology was set to London dG
as the first and the second scoring functions, the refinement
methodology was set to Forcefield, and the 30 best scoring poses and
the mean energies were retained. The binding site was defined in MOE
software using the co-crystallised ligand QZ59-RRR. This docking
methodology has been previously validated for P-gp [51].

Model development and validation
To perform QSAR analyses, P-gp inhibitors were divided into

validation and training sets. To divide the inhibitors, they were ordered
with ascending Ki values and then from every five compounds, four
were randomly allocated into the training and one into the validation
set. This validation set remained external and was not used at any stage
of the model development. The process of allocating chemicals into
training and validation sets ensured similar Ki ranges for the validation
and training sets. In this way, the training and external validation data
sets consisted of 176 and 43 compounds, respectively. In addition to
using this external validation set, all the model development methods
employed a ‘cross-validation’ procedure that allowed leaving 1/7th or
1/10th of the compounds out (Leave-Many-Out) by random splitting of
the training set compounds. This ‘V-fold’ cross validation was used by
the software for decisions on the complexity of models and model
optimization in terms of their accuracy for the internal validation set.
Besides, ‘Cross-validate tree sequence’ was used in addition to V-fold
cross-validation to ensure the validity of each level of the tree for
accurate prediction of log Ki in both training and validation sets.

STATISTICA Data Miner version 11 was used for the statistical
analysis. Statistical methods consisted of decision tree methods and
ensemble methods, including Classification and Regression Tree
(CART), Chi-square Automatic Interaction Detector (CHAID),
Boosted Trees (BT), Random Forest (RF) and Multiple Linear
Regression (MLR). As the multiple linear regression models using
stepwise regression descriptor selection did not produce an acceptable
level of accuracy, Multivariate Adaptive Regression Splines (MARS)
model was developed. Log Ki was the dependent variable and the
predictors were selected by the embedded feature selection methods in
CART, CHAID, BT and RF from all the molecular descriptors and
docking scores available for the inhibitors and substrates. For the
development of the MARS model, several pre-processing feature
selection techniques were examined.

Regression Tree (RT) and Interactive tree (I-tree) using
CART

STATISTICA version 11 (StatSoft Inc. Tulsa, OK) was used to
develop the RTs using the CART algorithm. The analysis has an
embedded feature selection method, which picks the most significant
molecular descriptors for splitting the data into two most
homogeneous groups (called branches or nodes) and carries the
splitting until all the data in the nodes have the same value or a
stopping criterion has been fulfilled. By doing so, it builds an optimal
tree structure to predict continuous dependent variables via V-fold
cross-validation. The size of a tree in CART analysis is an important
issue, since an unreasonably big tree can lead to overfitting and can
make the generalisation to external data and the interpretation of the
model more difficult. Several stopping criteria were examined,
including the default settings in STATISTICA. The default stopping
criteria were minimum number of cases of 24 to allow further splitting
and the maximum number of nodes set to 100. The default V-value of
10 or seven was used in the V-fold cross-validation and the standard
error for the internal test set was used to check the reliability of the
resulting RTs.

Interactive tree is a CART-style tree, which allows for the molecular
descriptors to be selected manually by the operator. This tool is useful
when investigating the effect of certain variables/molecular descriptors
on the property under investigation, in this case log Ki. In I-tree, apart
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from the usual V-fold cross-validation procedure, another cross-
validation option, “Cross-validate tree sequence” was also applied. This
validation method is applied to the entire tree sequence, instead of just
the final tree in V-fold cross-validation [52].

Chi-square Automatic Interaction Detector (CHAID)
CHAID is one of the oldest tree methods, initially suggested by Kass

in 1980 [53]. This tool performs multi-level splits, where CART uses
binary splits. CHAID is well suited for large data sets. Cross validation
was used to safeguard against overfitting the CHAID tree.
STATISTICA default setting for stopping criteria were used, including
minimum number of cases for splitting of 22, maximum number of
nodes of 1000, probability for splitting of 0.05 and probability for
merging of 0.05. To test the statistical significance of splits, CHAID
computes a Bonferroni adjusted P-value for the respective descriptor
[52]. Bonferroni adjustment is an option in CHAID, used to control
the type one error rate (familywise error rate) when testing multiple
hypotheses. It is usually accomplished by dividing the alpha level by
the number of tests being performed (usually 0.05/n). In this work, we
used a Bonferroni adjustment as our preliminary results showed lower
cross validation error when this adjustment was used.

Boosted Trees (BT)
BT analysis in STATISTICA generates a series of very simple

boosting regression trees (BT), where each successive tree is built for
the prediction of residuals of the preceding tree. Each of these trees has
weak predictive accuracy but using the weak predictors together can
create a strong predictor [52]. The default values for learning rate, the
number of additive terms (number of trees), random test data
proportion (percentage of data points in internal testing pool) and
subsample proportion were 0.1, 200, 0.2 and 0.5, respectively. Various
subsample proportions of 0.45, 0.50, 0.55 and 0.60 were also examined
in combination with the learning rates of 0.10, 0.03, 0.05 and 0.08. The
best model was selected based on the performance indicators for the
internal validation set. The seed for random number generation, which
controls which cases are selected in sampling, was set to one. The
maximum number of nodes was set to three, meaning that each tree
will have one binary split.

Random Forest (RF)
An RF model is an ensemble of tree predictors such that each tree

depends on the values of a random vector (a random selection of
molecular descriptors and training set compounds) sampled
independently. The method builds a series of simple trees where the
predictions are taken to be the average of the predictions of all the trees
[54]. Various subsample proportions of 0.45, 0.50, 0.55 and 0.60 were
examined while the number of predictors (to be randomly considered
at each node) was 9. The random test data proportion was 0.3 for the
internal validation and number of trees was 100. The default settings
were used for stopping conditions including minimum number of
cases, maximum number of levels, minimum number in child node
and the maximum number of nodes of 5, 10, 5 and 100, respectively.
The best model was selected based on the estimation error for the
internal test data.

Multivariate Adaptive Regression Splines (MARS) model
MARS is a non-parametric regression procedure that constructs a

relation between the dependent and independent variables from a set

of coefficients and basic functions that are entirely driven from the
regression data [55]. It is a very flexible technique that automatically
models non-linearities and interactions between variables. The non-
linearities (knots) are represented by the so-called ‘hinge functions’;
these are expressions of the type ‘max (a,b)’ where the value of this
expression will be ‘a’ if ‘a>b’, or else ‘b’. Interactions between each
variable pairs can also be expressed in the formula. MARS model is
developed by stepwise addition of basic functions in pairs (forward
pass) to reduce the sum-of-squared residual error and then step-by-
step removal of the least significant terms to achieve better
generalisation (backward pass). Model subsets are compared using the
Generalized Cross-Validation (GCV) criterion. GCV is the adjusted
form of residual sum-of-squares that penalises the addition of knots in
order to limit the model flexibility and overfitting.

In addition to using all the molecular descriptors in MARS analysis
and allowing MARS to select the significant descriptors, we performed
a pre-processing feature selection to select a limited number of
molecular descriptors for use in MARS analysis. Feature selection
methods were the Chi-square method as implemented in STATISTICA
[52], stepwise regression analysis and variable importance rank from
RF and BT analyses. The Chi-square-based feature selection in
STATISTICA picks a subset of descriptors from the descriptor pool
without assuming that the relationships between the predictors and the
dependent variables are linear or even monotone. In this feature
selection, the range of continuous variable values was divided into 10
intervals. The six best descriptors picked by STATISTICA feature
selection, the six best descriptors selected by stepwise regression
analysis, as well as the top 5, 10, 15, 20 and 25 descriptors picked by RF,
and the top 5, 10 and 15 descriptors picked by BT were examined in
separate MARS analyses and the resulting models were compared in
terms of the prediction error. In MARS analysis, the default model
specifications for maximum number of basic functions, degree of
interactions, penalty and threshold were 21, 1, 2 and 0.0005,
respectively.

Results and Discussion
P-gp is an important polyspecific transporter protein that can

significantly affect the pharmacokinetics of various pharmaceuticals as
well as the effectiveness of chemotherapeutics. In this investigation, a
large dataset of inhibition constant was collated to investigate the
development of a universal model for P-gp inhibitors. To help
overcome the problem of heterogeneity of the data from various
laboratories, that incorporate various substrates at differing
concentrations in the design of their experiments, several strategies
were implemented. First, the IC50 values were converted to Ki values,
which is a more comparable measure of inhibitory activity. Secondly,
the molecular descriptors of the probe substrates were also used in the
analyses and model development process. Third, the non-linear
decision trees and MARS methods were employed that are flexible;
therefore, in theory they should be able to deal with more
heterogeneous data.

Various decision trees and ensemble models as well as MARS model
were developed for the prediction of P-gp inhibition constant. Table 1
summarises the selected models developed using various statistical
methods. All models obtained were cross-validated and pruned
accordingly. The selected models were those with the lowest standard
error for the internal test set. Models listed in Table 1 resulted from
various feature selection and data analysis methods. The majority of
these models can be easily interpreted in terms of the molecular
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characteristics required for an effective P-gp inhibitor. Here we provide
a brief description of the models and the inferred molecular
characteristics. The molecular descriptors employed in these models
have been described in Supporting Information II.

Model Descriptors
supplied

Descriptors
incorporated
manually

Group Risk
Estimate

Standard
Error (±)

RT All descriptors -
Train 0.428 0.044

Test 0.856 0.197

CHAID All descriptors -
Train 0.559 0.069

Test 0.682 0.188

I-tree All descriptors Docking
energies

Train 0.66 0.079

Test 0.556 0.105

BT All descriptors -
Train 0.162 0.016

Test 0.563 0.15

RF All descriptors -
Train 0.419 0.049

Test 0.563 0.121

MARS Selected
descriptors -

Train - 0.051

Test - 0.133

Table 1: Standard error for the training and internal test sets for the
selected models.

Regression trees
Figures 1 and 2 show the regression trees obtained using CART and

CHAID, respectively. In the regression trees, N is the number of P-gp
inhibitors, Mu is the average, Var is the variance of log Ki in each node,
and ID is node number we have referred to in the text (e.g., ID=3 is
node 3). Also note that terminal nodes (i.e., leaves) have been shown in
red boxes, while non-terminal nodes are in blue boxes. It can be seen
in Figure 1, that the molecular descriptor selected by CART algorithm
for the first split of the data is SlogP (octanol/water partition
coefficient). The tree indicates that compounds with lower lipophilicity
than SlogP=3.179 are less potent inhibitors of P-gp and, with average
log Ki of 1.88 (node 2), they may be considered as non-inhibitors. On
the other hand, potent inhibitors are very lipophilic (node 3), and
highly lipophilic compounds with a higher number of aromatic bonds
are generally considered as strong inhibitors (node 5), particularly
those with no five-membered rings in their structure (node 8). Besides,
within the high lipophilicity compounds (SlogP>3.179) those with
lower number of aromatic bonds have an intermediate inhibitory
activity (node 4) that will be increased based on the presence of atoms
with LogP(o/w) contribution of 0.15-0.20 (SlogP_VSA5) in their
structures (node 7). Numerous atoms of these types have been
presented by Wildman and Crippen [56]. Further splitting in this tree
indicates the effect of very large polar surface area (vsa_pol>43.3),
which will significantly decrease inhibitor potencies (node 11).

Figure 2 is the selected model developed by CHAID method.
Similar to the CART result, SlogP is the first (most important)
descriptor in this CHAID model. In this case compounds have been
split into five branches, two of which are terminal nodes. According to
this first level of data partitioning, there seems to be an optimum level

of lipophilicity for the maximum inhibitory potency at the SlogP range
within 4.852 < SlogP ≤ 6.852. This is in agreement with previous
studies that have described LogP as an important parameter in drug
binding to P-gp [20,37,57]. The significance of LogP in P-gp inhibition
is due to the presence of several lipophilic and aromatic residues in the
binding sites of P-gp [19]. With the exception of a few compounds in
node 10, compounds with lower lipophilicity (SlogP < 4.852) are
generally poor inhibitors of P-gp. Compounds in node 10 are those
with 2.264 < SlogP ≤ 3.874, which have been tested using probe
substrates that are moderately ionized (fraction unionized (S-fU) of
between 0.000 and 0.240 at pH 7.4 for the substrate). Compounds with
lipophilicity in the range 3.874 < SlogP ≤ 4.852 have an average log Ki
of 0.89, which will be lower (more potent) if the compounds have large
negative surface area (composed of atoms with PEOE atomic charge
below -0.30) (node 13 with PEOE_VSA-6 > 7.767).

Relatively hydrophilic compounds with SlogP ≤ 2.264 (node 2) have
been partitioned based on their number of double bonds where those
compounds with three or less double bonds are much weaker p-gp
inhibitors (compare node 7 and 8), especially those in node 14 that
have 8 or fewer rotatable bonds (opr_nrot).

Significance of P-gp docking energies
Despite using P-gp/inhibitor interaction energies from docking

studies as one of the molecular descriptors, none of the decision tree
algorithms above picked docking scores for partitioning of the log Ki
data. This was explored further by using the docking scores in
interactive tree (I-tree) model (Figure 3). Docking score was
incorporated as the first variable for partitioning of the data and this
was found statistically significant by cross validation. Figure 3 shows
that the statistically selected threshold for docking energy is -13.140
(kcal/mol). Compounds with docking energy below this value (node 2)
are more effective inhibitors than those with higher docking scores
especially if they contain a large hydrophobic volume at the highest
hydrophobic interaction level (77.062 ≤ vsurf_D8) (61 compounds in
node 5). However, this tree is not successful in identifying the very
strong inhibitors (top 25% with average log Ki of -0.128), and all the
terminal nodes of the tree have a moderate log Ki. More specifically,
Figure 1 has a terminal node with average log Ki of -0.85 and another
with the average log Ki of 0.09, while the minimum log Ki in Figure 3 is
0.43 (node 5).

Docking is a very useful tool in computer-aided drug discovery due
to the importance of shape-matching in drug-macromolecule
interactions, as well as the properties of contact surface between the
drug and the protein. It has been postulated that compounds with
shape and chemistry similar to those of a known active molecule have
a high probability of being active [58]. On the other hand, the
interaction energy can be notoriously misleading with large molecular
weight compounds often achieving the most negative interaction
energies due to the additive nature of the energy formula [59-60]. In
our training set, the top ten molecules with the most negative
interaction energies had an average molecular weight of 925 Da in
comparison with an average of 461 Da for the remaining compounds
in the training set. On the other hand, these ten compounds had a
lower average log Ki of 0.71 in comparison with 1.26 for the remaining
compounds in the training set.

In addition, docking experiments are most reliable when interaction
between a rigid protein target and a flexible ligand is investigated [61].
For docking results to successfully guide the predictions of inhibitors
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and substrates of P-gp, it should take into account the very flexible
nature of this enzyme [62].

Figure 1: RT developed using the training set with the descriptors selected by CART algorithm.

Previous studies have described the importance of protein flexibility
in P-gp ligand interactions [63,64]. Induced fit mechanism explains the
fact that both drug and protein are flexible, and can modify their shape
to generate more favourable contacts [65]. Current evidence shows
that P-gp is able to accommodate a wide range of substrates due to the
mobile nature of its transmembrane helices [63,66]. However, docking
algorithms have limitations in predicting large conformational changes
that are common for some proteins up on binding with the ligands.

Ensemble decision trees
Studies have shown that an ensemble of several trees may result in

better prediction accuracy when there is a significant diversity among
the models [67]. In this investigation BT and RF were used. BT method
is an ensemble method that computes a sequence of simple trees, each
built for the prediction of residuals of the preceding tree. Various
combinations of subsample proportions and learning rates were
examined and the best model was selected based on the prediction
error for the test set. The best result was obtained with the subsample
of 0.6 and learning rate of 0.05, using the optimum number of trees of
161 (Supporting Information III, Supplementary Figure S1).

The top ten most important descriptors as calculated by
STATISTICA software has been described in Supporting Information
II. Different orders of molecular connectivity indexes (three

descriptors), number of carbon atoms, categorical variable indicating
the nature of the substrate, lipophilicity, hydrophilic volume, polar
volume, and molecular polarizabilities were the most important BT
descriptors.

RF is another ensemble method; it develops a number of decision
trees using a random selection of training set compounds and
molecular descriptors. The graph of average squared error against
number of trees for training and cross-validated test sets indicated that
the test error reaches a plateau at around 60-70 trees (Supporting
Information III, Supplementary Figure S2).

In this selected RF model, molecular features that indicate surface
lipophilicity/hydrophilicy were the most important model features.
These included volsurf descriptors indicating ratio of hydrophilic
volume, total hydrophobic volume, and hydrophilic/lipophilic balance,
lipophilicity parameters (partition coefficient and distribution
coefficient), hydrophobic surface area and number of aromatic bonds.
In addition VDistEq, an adjacency and distance matrix descriptor that
is a highly discriminating topological index representing the extended
connectivity and the shape of molecules [68] has been selected as one
of the top 10 most significant descriptors of the model.
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MARS model
Many combinations of molecular descriptors picked by several pre-

processing feature selection methods were used in MARS analysis to
obtain the best possible model. The feature selection methods included
Chi-square method, stepwise regression analysis, and variable
importance rank from RF and BT analyses. Previous investigations
have shown that predictor importance using RF is a very successful
feature selection method that can be applied for reducing the data
dimensionality prior to CART analysis [69]. Here, the best MARS
model was obtained using 12 descriptors from STATISTICA feature
selection and variable screening as the independent variables.
Subsequently, as a result of the pruning function in MARS analysis,

four out of the 12 molecular descriptors were used in the selected
model (presented in Table 2). The MARS model in Table 2 consists of
nine basis functions with two descriptors employed in three basis
functions each; one descriptor employed in two basis functions and
one remaining descriptor is involved in one basis function. This model
does not contain any interaction terms. The descriptors of this model
are not highly correlated, with the highest intercorrelation showing a
Pearson correlation coefficient of -0.70. In this model, molecular
descriptors have been presented according to the rank order of their
importance, with the most important descriptor being the first one in
the equation.

Figure 2: CHAID developed using the training set.

An interesting feature of the MARS model is the knots at 1.785 and
6.119 for octanol/water partition coefficient, SlogP; these show that
increasing the lipophilicity of the inhibitors from 1.785 to 6.119 leads
to a reduction in log Ki values i.e., stronger inhibitors. On the other
hand, for compounds with extremely high or extremely low
lipophilicity (SlogP > 6.119 or SlogP < 1.785) with increasing
lipophilicity an increased log Ki values will be observed. In addition to

this, distribution coefficient at pH 10 (LogD(10)) is also used in the
model; it indicates increase in potency of inhibitors when LogD(10)
increases from 0.82 to 2.79, but increase in LogD(10) above 2.79 results
in the reduction of inhibitory potency.
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Figure 3: I-tree developed using docking energy as the first variable.

It must be noted that LogD(10) is a lipophilicity parameter that is
also affected by acid/base property of compounds, and it is higher for

basic compounds while lower for acidic compounds. The next
descriptor of the MARS model is carbon valence connectivity index (a
topology descriptor) with three knots at 13.115, 10.310 and 8.114. The
model indicates that increasing the connectivity index results generally
in increased potency (reducing Ki values) with the exception of
compounds with 10.115 < chi1v_C > 13.115 where the relationship is
opposite.

Finally, lead-like descriptor (opr_leadlike) in the model indicates
that compounds with non-lead-like molecules (according to Oprea’s
definition [70]) have strong inhibitory activity towards P-gp. This
observation regarding the higher inhibitory activity of non-lead-like
compounds is in agreement with a recent study by Wang et al., in
which lead-like compounds had lower propensity to be P-gp substrates
[71].

Validation of models
All models were validated using an external validation set of 43

compounds. Table 3 shows the error of the selected models for the
prediction of log Ki values of the training set and external validation
set.

Log Ki = 4.199+ 1.87*max(0, SlogP-6.119) – 0.46*max(0, 6.119-SlogP) – 0.82*max(0, chi1v_C-13.115) + 0.76*max(0, chi1v_C-10.310) – 0.80*max(0, SlogP-1.785) +
0.56*max(0, LogD(10)-2.790) + 0.42*max(0, opr_leadlike-0.000) – 0.23*max(0, chi1v_C-8.114) – 0.43*max(0, LogD(10)-0.820)

N=176 GCV error=0.633 Mean residual=0.000 SD(residual)=0.712

Table 2: The selected MARS model.

It can be seen that the chi-square based decision tree model
(CHAID model) gives the most accurate prediction of log Ki for the
validation followed by BT and RF. For the training set, BT calculates
the most accurate log Ki values followed by CHAID and the RF model.
The difference between model accuracy for training and validation sets
may indicate the possibility of overfitting into training data. In this
case, amongst the top three models listed above for the validation set
prediction accuracy, CHAID has the lowest difference between the
training and the validation set errors, while RF has the greatest
difference.

Effect of substrates on the Ki measured for the inhibitors
It has been suggested that there are several binding sites for the

molecularly diverse spectrum of P-gp substrates, inhibitors and
modulators. For example, using equilibrium and kinetic radioligand
binding assays, Martin and co-workers established the presence of at
least four distinct interaction sites on P-gp which were able to
communicate allosterically [21]. Moreover, various competitive,
cooperative allosteric and anticooperative allosteric interactions are
possible between the substrates and regulators [20].

As a result, the inhibitory activity measured using different
substrates will be different for the same inhibitor [42]. The x-ray
structure of mouse P-gp with 87% sequence identity to human P-gp
has recently been described [19]. It was found that P-gp can
distinguish between different 3D shapes, and that stereoisomers may
bind to different binding locations. Given the complexity of the
binding locations and modes of inhibition, it has been suggested that a
single pharmacophore cannot effectively describe the inhibitors of

various P-gp substrates and, therefore, different pharmacophores have
been proposed for the inhibition of the transport of different P-gp
substrates [72].

Model MAE* for training set MAE for validation set

RT 0.519 0.707

CHAID 0.399 0.511

I-tree 0.626 0.607

BT 0.322 0.554

RF 0.488 0.601

MARS 0.589 0.651

Table 3: The summary of the prediction accuracy of the Ki values.
*MAE is mean absolute error.

The modelling strategy described in this study should be able to deal
with the diversity of the binding sites. In particular, molecular
descriptors of the substrates were incorporated in the model
development in addition to molecular descriptors of inhibitors.

Regression tree is a powerful data mining tool that is able to select
the important features for dividing the data into high or low activity
groups (distinct groups of compounds with high or low average log Ki
values). The models described above indicate the importance of
substrate in the measured inhibitory activity as, the two most accurate

Citation: Sharifi M, Raevsky AV, Ghafourian T (2016) Effect of Molecular Structure, Substrate and Docking Scores on the Prediction of the
Inhibition Constants of P-glycoprotein Inhibitors. J Drug Metab Toxicol 7: 217. doi:10.4172/2157-7609.1000217

Page 8 of 12

J Drug Metab Toxicol, an open access journal
ISSN: 2157-7609

Volume 7 • Issue 4 • 1000217



models, BT and CHAID models, contain substrate descriptor selected
by the feature selection methods.

Structural determinants of potent P-gp inhibitors
Inhibitors of P-gp can be competitive inhibitors that may bind to the

substrate binding site, or non-competitive which may bind to other
distinct binding sites such as the ATP-binding site. An investigation
that involved docking of multispecific inhibitors into the ATP-binding
domain of P-gp has shown that some of the less lipophilic inhibitors
can bind to this site, which may contribute to their inhibitory activity
[37]. On the other hand, the more common, lipophilic inhibitors do
not interact with the ATP-binding domain of P-gp. Inhibitors from the
steroid and flavonoid chemotypes are examples that may bind to the
ATP-binding site [73,74]. The training set in this study did not contain
any flavonoids but included five steroids (testosterone, progesterone,
spironolactone, digoxin and cortisol). These steroids are also expected
to bind to the substrate binding site. For example, studies for several
sex-steroid hormones have shown that they are substrates of P-gp
mediated transport as well as being a P-gp enzyme inducer [75].
Another example is digoxin with a steroid structure that is also a
known substrate of P-gp as well as acting as an inhibitor [76].

From the description of the models outlined above, it can be seen
that lipophilicity is the key factor for P-gp inhibition along with the
molecular topology and the size of the inhibitors as well as the nature
of the substrate probe. In terms of the lipophilicity, a higher partition
coefficient than what is recommended for drug-like molecules (based
on Lipinski or Oprea’s rules) improves the inhibitory activity towards
P-gp. According to the best model (CHAID), the ideal lipophilicity is
SlogP value in the range (3.874,6.852). A similar pattern can be
observed in MARS model where SlogP increase from 1.785 to 6.119
increases the inhibitory potency. Previous studies using classification
models have found a higher lipophilicity (log P) for multispecific
inhibitors of P-gp in comparison with non-inhibitors [37,74], although
these studies have not specified a maximum lipophilicity threshold. For
P-gp substrates also a higher lipophilicity requirement has been
reported in an investigation using a large set of proprietary GSK
compounds (i.e., a log P>4 for the substrate class) [77].

Apart from the partition coefficient, other lipophilicity measures,
which also indicate the size of the lipophilic regions, are found to have
an impact. Hydrophobic volumes measured by volsurf parameters
(vsurf_D1, vsurf_D2, vsurf_D6 and vsurf_D8) are among the top 10
most important parameters of the BT and RF models and a large
vsurf_D8 indicates higher inhibitory potency in the I-tree model, while
a small Polar van der Waals surface area (vsa_pol) in RT model
improves potency of the inhibitors. These parameters are indicators of
both size and lipophilicity. The positive impact of large molecular size
and lipophilicity is in agreement with the known structure of P-gp and
its proposed substrate binding pocket, where the large binding site of
P-gp consists of a considerable number of lipophilic amino acids [2].
The surface area as a descriptor has also been used by Demel and
colleagues for the classification of substrates/nonsubstrates, which
indicates compounds with hydrophobic surface area>300, log P<7 and
more than seven hydrogen bond acceptor groups are substrates of P-gp
[78]. Lipophilicity and molecular size have also been indicated in local
QSAR models for individual classes of modulators/ substrates [57].

Higher inhibitory activity of non-lead-like compounds (based on
Oprea’s definition) in the MARS model may indicate the positive effect
of large molecular size and higher lipophilicity than lead-like
molecules. Compounds that accommodate the Opera’s test are defined

as compounds with molecular weight ≤ 460 Da, -4 ≤ Log P ≤ 4.2, Log
Sw ≥ -5, number of rotatable bonds ≤ 10, number of rings ≤ 4, number
of hydrogen donors ≤ 5 and number of hydrogen acceptors ≤ 9 [70].
According to our models, compounds that violate more than two of
the above rules are better inhibitors of P-gp. A close observation of
such compounds indicates higher lipophilicity, as well as higher
molecular size and number of rings are the reason for the violations
that results in compounds considered to be inhibitors. Examples are
paclitaxel, nicardipine and vinblastine.

Other significant molecular determinants of P-gp inhibitors are the
molecular topology and shape as described by the adjacency and
distance matrix descriptors, such as the Kier and Hall molecular
connectivity index (chi0_C, chi0v_C and chi1v_C) in the BT and
MARS models, number of rings in the RT model and VDistMa in the
RF model. Broccatelli and co-workers [74] have hypothesised that an
optimal shape may exist for P-gp inhibitors, but the optimal shape
needs to have adequate lipophilicity and H-bond acceptor ability. H-
bond acceptor ability has also been emphasised by Demel et al. [78]
which show the importance of a high number or a large surface area of
H-bond acceptor groups. In the models presented in this study, the
effect of H-bonding is seen in the top 30 RT and RF models, including
negative charge weighted surface area (CASA-) and partial charge
descriptors [79]. It must be noted that these parameters as well as the
H-bonding parameters of Demel et al. may also relate to the molecular
size as larger molecules are more likely to contain many H-bond
groups.

It is worth mentioning that the most accurate model in this study,
i.e., CHAID model relies heavily on the lipophilicity of compounds as
there are only four additional molecular descriptors in the tree to
further adjust the predictions based on other molecular properties.
Outliers of this model clearly indicate that more specific structural
characteristics of the molecules are involved in their binding and
inhibition of P-gp. For example, there are five outlier compounds with
an absolute log Ki error of >1.6. Of these outliers, dipyridamole and
loperamide were both overpredicted, while montelukast, paroxetine
and verapamil (when digoxin or irinotecan were the probe substrates)
were underpredicted. All of these outliers, except paroxetine, have very
large (five times larger than the average of all compounds) van der
Waals surface area of minimally charged (mainly carbon) atoms
identified by SlogP_VSA2. This shows a large SlogP may be misleading
in the prediction of log Ki when other structural characteristics are also
involved.

The Best model (CHAID) showed a similar MAE for the
compounds with or without Lipinski’s rule of five violations and
Oprea’s lead like violations (MAE values ranging from 0.393-0.411,
differences not significant with P > 0.05). The range of descriptors used
in the CHAID model for the training set were SlogP within -1.651 to
7.889, b_double within 0-5, S-fU within 3.753E-8 to 0.999,
PEOE_VSA-6 within 0.136-25.687 and opr_nrot within 0 to 25. It is
expected that any test set data within these descriptor ranges will
perform well with an MAE of 0.399.

Conclusion
In order to develop accurate models for the P-gp inhibition, this

study used Ki values of large set of P-gp inhibitors calculated from the
reported IC50 and the probe substrate’s Km and concentration values
from the literature using Cheng and Prusoff’s equation. In comparison
with IC50, this parameter allows a better comparison between
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inhibitory activities measured using different probe substrates and
substrate concentrations. In addition to the molecular descriptors of
the inhibitors, this QSAR study also incorporated the molecular
descriptors calculated for the probe substrates as the nature of the
substrate used in the experimental measurement of IC50 or Ki may
affect the inhibitory activity of the inhibitor.

The study resulted in a few predictive models based on the accuracy
of the prediction for the external validation set. The results indicated
that substrate parameters were important for the prediction of the
inhibitory activity as the top two best models incorporated substrate
molecular descriptors in addition to the molecular descriptors of the
inhibitors as selected by their feature selection procedures. In this
study docking scores were not found to be good predictors of
inhibitory activity, as they were not selected by any of the feature
selection methods described here. However, when these docking scores
were incorporated manually in CART analysis, docking scores were
statistically significant in the regression tree model (I-tree) with an
average prediction error for the validation set. The most significant
models indicated a higher lipophilicity of the potent inhibitors than
lead-like compounds. The potent inhibitors contained a high
molecular weight, a high volume of hydrophobic groups and a large
surface area.

The best model was based on a chi-squared based regression tree;
CHAID followed by the BT model the RF models. The statistical
parameters of the CHAID and the RF models indicate that they have a
lower chance of overfitting in comparison to the BT model. Models
indicated that the potent P-gp inhibitors have higher lipophilicity and
molecular weights than drug-like molecules identified by Oprea's rule.
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