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Abstract

The ubiquitous genus Alternaria contains many species that are able to invade cereals, oleaginous plants and
other crops. Alternaria alternata is considered one of the most important species and can produce several
mycotoxins under favourable conditions of temperature and humidity, including the economically important toxins:
alternariol (AOH) and alternariol monomethyl ether (AME). The aim of this study was to evaluate the radio-sensitivity
of Alternaria alternata spores through different gamma radiation doses. A. alternata growth and the production of
AOH and AME were then analyzed. After fungal irradiation with 2 kGy, 5 kGy and 7 kGy, the spores were suspended
with sterile distilled water followed by inoculation on wheat grains. The count of the colony-forming units per gram
(CFU/g) was performed using Dichloran Rose Bengal Chloramphenicol (DRBC) and Dichloran Chloramphenicol
Agar Malt Extract (DCMA); AOH and AME were analyzed using Liquid Chromatography coupled with Mass
Spectrometer (LC-MS). Results showed that fungal growth and toxin production increased with the increase of
radiation dosage. The implications of these findings in relation to the resistance of A. alternata spores to gamma
irradiation are discussed.

Keywords: Alternaria alternata; Spore; AOH; AME; Gamma
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Introduction
The genus Alternaria is a ubiquitous fungus in nature and its species

are considered both plant-pathogenic and saprophytic that may affect
crops in the field or cause harvest and post-harvest decay of plant
products [1]. Some species are able to produce mycotoxins in plants
and food. This has several implications due to toxic effects of
Alternaria toxins in humans and animals, therefore compromising
food safety and posing important risks to public health [2].

Alternaria alternata is considered the most mycotoxigenic species
within this group, and it is able to produce several toxins, including
alternariol (AOH) and alternariol monomethyl ether (AME). These
toxins frequently occur in wheat, other grains and seeds as well as
fruits and processed fruit products [1,3-9]. Furthermore, AME and
AOH have been reported to be genotoxic, mutagenic and carcinogenic
[1,5,10].

Previous studies suggested that the increased incidence of human
oesophageal cancer in China was correlated with the contamination of
cereals with A. alternata toxins [11]. Lehmann et al. [12] have reported
the estrogenic potential, inhibition of cell proliferation, and
clastogenicity of AOH in Ishikawa and V79 cells in vitro. Although
various studies have demonstrated the toxicity of AOH and AME
[1,5,10,12], currently, there is a lack of regulation for the presence of
Alternaria toxins in food worldwide. The European Food Safety
Authority (EFSA) [10] has recently released an opinion on Alternaria
toxins for European countries, with the human dietary exposure to
AOH and AME exceeding the threshold of toxicological concern

(TTC) value, indicating a need for more toxicological data and
regulation for the presence of these toxins in food.

Up to date, many measures have been taken in order to decrease
fungal contamination and mycotoxin production in food, including
radiation methods. Radiation is a physical treatment, which consists in
the exposition of packed or bulk food to an ionizing radiation, during
enough time to effectively reduce microbial contamination [13-15].
The treatment efficacy depends on several factors, including food
composition, irradiation doses and the number or type of
microorganism [16]. Radiation methods can inactivate
microorganisms that decompose food, including bacteria, filamentous
fungi and yeasts. As well as destroy other organisms that can cause
diseases, including parasites and insects [17]. However, a previous
study demonstrated the importance of radio-resistance of fungal
species, such as Fusarium and Alternaria [18]; this might lead to
serious implications in the control of filamentous fungi through
radiation process, for this reason, studies of radio-sensitivity of species
of fungi are warranted for developing better strategies to control fungal
and mycotoxin contamination in food.

Based on this information, this work aimed to evaluate the radio-
sensitivity of A. alternata spores through different gamma radiation
doses. The growth of A. alternata and the AOH and AME production
in wheat samples artificially contaminated with A. alternata were then
analysed.

Materials and Method

Fungal strain
The toxigenic A. alternata strain used in the study was isolated from

sunflower seeds cultured at the Experimental Station of the
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Department of Zoo Technology, Nova Odessa, São Paulo, Brazil. This
strain (5 CP) is part of the culture collection of the Department of Zoo
Technology and part of the culture collection of the Institute of
Biomedical Sciences, ICBII, University of São Paulo, Brazil.

Irradiation process
The isolate was irradiated at three different doses (2, 5 and 7kGy) in

the Institute of Energy and Nuclear Research (Instituto de Pesquisas
Energéticas e Nucleares - IPEN-CNEN/SP) using a Gammacell 220
cobalt-60 source (MDS Nordion, Ottawa, Canada). A dose rate of 2.58
kGy/h was applied, with the temperature ranging from 25ºC to 28ºC.

Spore suspension
A toxigenic A. alternata strain isolated from CATI sunflower seeds

cultured at the Experimental Station of the Department of Zoo
Technology, Nova Odessa, São Paulo, Brazil, was inoculated into a
Roux flask containing V8 agar [19] and incubated under continuous
cold light illumination for 12 days. After this period, the surface of the
colony was gently scraped off with a cell scraper and the inoculum
transferred into a tube containing 50 mL distilled water. To prevent
radiolysis, this suspension was filtered through sterile filter paper and
the spore mass retained on the paper was transferred into another
tube. The tubes were then centrifuged at 10,000 rpm for 20 min to
remove remaining water. The supernatant was discarded and the spore
mass was transferred into sterile test tubes and then irradiated with
doses of 2, 5 and 7 kGy. After irradiation, the spore mass was re
suspended in sterile distilled water and 2 drops of Tween 80 per 100
mL were added. Spores were counted in a Neubauer chamber and the
final concentration of the suspension was adjusted to 1×106 spores/mL.
The control group (non-irradiated) was prepared after scraping off the
surface of the colony with sterile distilled water and Tween 80 and the
concentration was also adjusted to 1×106 spores/mL.

Wheat samples
A total of 5 kg of wheat seeds were used for the determination of the

number of colony-forming units per gram (CFU/g) and investigation
of mycotoxins. The seeds were divided into four groups of 8 samples
each.10 g of each sample were used for the investigation of fungal
growth and 2.5 g for the detection of mycotoxins (AOH and AME).
The samples were ground and stored in sealed polypropylene bags and
then irradiated with 20 kGy for the elimination of contaminating
microbiota. After this procedure, the samples were inoculated with A.
alternata spore suspensions previously irradiated with 2, 5 and 7 kGy.
The samples were then divided into four groups: group 1 (control
group inoculated with non-irradiated suspensions) and groups 2, 3
and 4 (inoculated with irradiated suspensions). After 8 and 15 days of
incubation at 25°C, mycotoxins and the number of CFU/g were
analysed.

A. alternata spore inoculation on the grain samples
The grain samples were ground and stored in autoclaved beakers.

Next, 1 mL of the spore suspension was inoculated into 10 g of wheat
for analysis of the effect of radiation on the fungal growth. The samples
were stored in a plastic container and incubated in a BOD oven at an
adjusted temperature of 25ºC and relative humidity of 97.5% obtained
using 200 mL of 30% potassium sulphate solution, resulting in a water
activity (Aw) of 0.98 [20]. The container was sealed with adhesive tape
and the samples were incubated for 15 days until analysis.

Water activity
Water activity was determined with an AQUALAB CX-2 apparatus

(Decagon, Pullman, WA, USA).

Analysis of the fungal growth on grain samples
After the incubation period, 10 g of each sample was transferred to

Erlenmeyer flasks containing 90 mL sterile distilled water. Samples
were shaken for 30 min and 1 mL was divided into serial dilutions of
10-2 to 10-4 in test tubes. Petri dishes containing Dichloran Rose
Bengal Chloramphenicol (DRBC) Agar, recommended for the
enumeration of common fungi in foods [21], and Dichloran
Chloramphenicol Malt Extract Agar (DCMA), recommended for the
isolation of Alternaria species [22], were prepared for each dilution. An
aliquot (0.1 mL) of each dilution was transferred to a Petri dish and
spread over the surface with a Drigalski spatula. The plates were
incubated at 25°C for 7 days and the number of CFU/g was
determined [23].

Determination of AOH and AME toxins by LC-MS
Inoculation of the spore suspension

A total of 0.5 mL of each spore suspension was inoculated into 2.5 g
of wheat grains. Samples were stored and incubated as described in
item A. alternata spore inoculation on the grain samples for a period of
8 days.

Extraction of AOH and AME

The determination of AOH and AME was performed based on the
methodology recommended by Visconti et al. [8], with modifications.
Samples were transferred into a flask with 15 mL of methanol. After
shaking for 40 minutes, the material was transferred to Falcon tubes
and centrifuged for 20 minutes at 3000 rpm, at 4°C. The supernatant
was transferred into another Falcon tube with 6 mL of ammonium
sulfate 20%. After 1 minute, they were centrifuged for 20 minutes at
3000 rpm, at 4°C. After centrifugation, the supernatant was transferred
into another Falcon tube with 6 mL of dichloromethane for the
extraction of toxins. The dichloromethane was removed from samples
using Pasteur pipette and evaporated. The residues were resuspended
in 1 mL of methanol for analysis.

Chromatographic conditions

A total of 20 μL of the methanol solution was injected into Liquid
Chromatography (CTO-10AVP, Shimadzu, Kyoto, Japan) coupled with
a Mass Spectrometer (Quattro LC, Waters / Micromass, Manchester,
UK). A column Luna C18, 5 µm, 150 × 4.60 mm was used at a
temperature of 40ºC, isocratic mobile phase of methanol: water (70:30,
v/v) and flow of 1.4 mL/minute.

The quantification was determined with calibration curves using
standard solutions of the respective mycotoxins (Sigma, St. Louis,
MO). For the calibration curves, concentrations from 62.5 to 5000
ng/mL of standard solutions of AOH and AME were used. The
correlation coefficient was 0.995036 for AOH, and 0.999347 for AME.
The limit of detection of the method was 1.25 ng/g, and the recovery
tests presented results of 70% for AOH, and 84% for AME.

Statistical analysis
The results were analysed using the nonparametric Mann–Whitney

test. In order to obtain a confidence level of 95%, the level of
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significance was corrected based on Bonferroni’s inequality [24]. For
the evaluation of the number of CFU/g and toxin levels, the individual
level of significance was p=0.0125 when the radiation dose was
compared, and p=0.004 when the type of culture medium and type of
toxin were compared.

Results and Discussion
Effects of gamma radiation on growth of A. alternata

In the current study, A. alternata spores were irradiated with 2, 5
and 7 kGy and the potential of A. alternata to grow in DRBC and
DCMA was analyzed. In general, at higher radiation doses, there was
an increase in A. alternata growth for DRBC medium (p<0.0125).

Number of CFU/g (× 104)

Dose 0 kGy 2 kGy 5 kGy 7 kGy

Sample DRBCa DCMAb DRBC DCMA DRBC DCMA DRBC DCMA

1 0.1 0.0 3.8 4.0 15.0 16.0 24.0 22.0

2 0.1 0.1 1.9 6.0 14.0 11.0 7.0 9.0

3 0.1 0.5 3.0 7.0 16.0 15.0 11.0 10.0

4 0.2 0.3 3.5 2.0 12.0 11.0 21.0 12.0

5 0.0 0.0 4.0 7.0 10.0 9.0 22.0 12.0

6 0.1 0.1 3.1 10.0 10.0 10.0 13.0 19.0

7 0.0 0.0 2.5 2.0 10.0 15.0 11.0 14.0

8 0.0 0.1 2.4 8.0 9.0 7.0 12.0 11.0

Mean 0.1 0.1 3.0 5.8 12.0 11.8 15.1 13.6

Standard deviation 0.1 0.2 0.7 2.9 2.7 3.2 6.3 4.6

Table 1: Number of Colony-Forming Units in samples of wheat grains, in control group (0 kGy), irradiated with 2, 5 and 7 kGy, in Dichloran Rose
Bengal Chloramphenicol and Dichloran Chloramphenicol Malt Extract Agar media, a: DRBC: Dichloran Rose Bengal Chloramphenicol, b:
DCMA= Dichloran Chloramphenicol Malt Extract Agar media.

There was also an increase in A. alternata growth for DCMA
medium at higher radiation doses (p<0.0125). Following the analyses
in the referred culture media. A. alternata growth was evaluated in

wheat samples. Interestingly there was an increase in the number of
CFU/g that was proportional to the increase in radiation dose
(p<0.0125).

 Dose 0 kGy 2 kGy 5 kGy 7 kGy

Sample AOHa AMEb AOH AME AOH AME AOH AME

1 6794.6 452.4 686.6 762.1 626.3 838.9 4165 4634.3

2 15569.3 422.1 1929.3 635.1 434.6 648.2 4755.5 4584.8

3 14476.8 388.8 647.2 579.6 486.2 819.6 5954 7461

4 4868.4 228.4 756.4 650.9 443.6 566.9 5068.2 5049.5

5 23699.5 523.1 705.5 561.7 458.7 677.9 6445.5 5963.8

6 11301.8 468 524.4 321 418.9 697.5 3830.9 7982.9

7 10723.4 299.6 445.5 400.2 462.9 795.8 5134.2 7323.8

8 16986.5 673 630.1 519.2 358.8 605.3 5844.6 7070.5

Mean 13052.5 431.9 790.6 553.7 461.3 706.3 5149.7 6258.8
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Standard deviation 5998 135.8 470.9 141 76.7 101.6 900.8 1373.3

Table 2: Levels of alternariol and alternariol monomethyl ether (ng/g) in wheat grains, in the control group (0 kGy) and irradiated groups with 2,
5 and 7 kGy, Detection limit of the method=1.25 ng/g, a: Alternariol, b: Alternariol monomethyl ether

Indeed, studies have demonstrated the effect of gamma radiation on
fungal growth [25-27]. Saleh et al. [28] studying the radio resistance of
fungi of the genera Alternaria, Aspergillus, Cladosporium, Curvularia,
Fusarium and Penicillium observed that the species A. alternata,
Cladosporium cladosporioides, Curvularia lunata and Curvularia
geniculata were the most resistant to the effects of gamma radiation.
Blank and Corrigan [29] and Maity et al. [30] revealed similar results,
with the genus Alternaria presenting the highest resistance to gamma
radiation. Another study revealed that A. alternata was resistant to the
dose of 5 kGy and was able to grow in both corn and wheat samples
after direct irradiation of the samples contaminated with A. alternata
[31].

The greater A. alternata growth at higher radiation doses might be
explained as a consequence of the radio-resistance of A. alternata
spores. It has been demonstrated that A. alternata presents
multicellular spores with thick wall and melanin, which promotes the
persistence of viable spores and the radio-resistance of the fungus
[29,32,33]. Mechanisms of DNA repair may be involved in the
resistance to ionizing radiation [34]. Under favourable conditions,
especially in a susceptible substrate, spores will germinate and the
fungus will be able to grow in abundance.

Melanin is a group of pigments with high molecular weight, formed
by oxidative polymerization of phenolic and indole compounds. it
usually presents dark brown or black color [35]. One of the melanin
properties is to protect organisms against various environmental
factors such as UV radiation, high temperatures and ionizing radiation
[35-36]. Previously, Dadachova et al. [32] observed that the exposure
of melanized fungi to ionizing radiation would promote their
abundant growth, when compared to the non-irradiated fungal group.

Another study has correlated radio-resistance to the total
concentration of lipids in microorganisms´ cells [37]. This hypothesis
is based on the increase of double carbon-carbon bonds in the lipid
membrane, which possibly increases the radio-resistance of
microorganisms [38]. The reasons why A. alternata is resistant to
gamma radiation is complicated to determine, however, we assume
that a high melanin content in association with multicellular spores
could be essential to promote radio-resistance and to allow A. alternata
to overcome the effects of gamma radiation. Therefore, enhancing the
fungus growth in wheat grains as well as in DRBC and DCMA.

Effects of gamma radiation on the production of AOH and AME

The use of radiation greatly affected the mycotoxin levels in the
experiment. The results showed that the levels of AOH were higher
than those of AME, in the control group and lower at the dose of 5 kGy
(p<0.0125). No difference was found in the levels of AOH at doses of 0
and 7 kGy and 2 and 5 kGy or in the levels of AME at doses of 0 and 2
kGy and 2 and 5 kGy (p>0.004). The results obtained in this study
corroborate the findings of Niles [39] who observed that the radiation
of wheat grains contaminated with Aspergillus flavus at doses of 10, 25
and 40 kGy promoted A. flavus growth and aflatoxin B1 production
when compared to non-irradiated wheat. O’Neill et al. [40] observed
that Fusarium culmorum was able to produce higher levels of
deoxynivalenol (DON) and zearalenone in corn samples after

radiation doses of 1 and 3 kGy with the highest production at a dose of
3 kGy, Ferreira-Castro et al. [41], examining corn grain samples
artificially contaminated with Fusarium verticillioides and irradiated
with 2 kGy, determine that F. verticillioides was able to produce higher
levels of fumonisin B1 after the radiation process.

Although previous studies have reported an increase in mycotoxin
production by various genera of fungi after exposure to gamma
radiation [40,41]. Several studies have shown controversial
information [42-44]; such conflicts could be attributed to the use of
different experimental conditions (e.g. humidity levels, radiation
process, growth conditions) as well as different species of fungi [45].
The inoculum size may also affect mycotoxin production; in A. flavus
and A. parasiticus the suppression of aflatoxin production occur when
the level of spores in the substrate exceeds certain levels [46-48].

In conclusion, A. alternata spores demonstrated to be resistant to
the radiation doses applied in this study. Under favourable conditions
the fungus was able to germinate and produce AOH and AME. Further
studies should be conducted to better understand the A. alternata
spore resistance to gamma radiation as well as the cause for producing
higher levels of toxins after radiation process. The increase in AOH
and AME production after the radiation process may indicate the need
for choosing an appropriate mechanism to effectively control A.
alternata and its toxins in food.
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