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Abstract

A greenhouse experiment was conducted at the International Centre for Tropical Agriculture in Colombia to
evaluate effects of the fungal endophyte, Acremonium implicatum, on growth and physiological responses of five
Brachiaria cultivars. Plants were grown under well-watered (WW) and drought-stressed (DS) conditions, with (E+)
and without (E-) endophyte; and their morpho-physiological responses were determined. Significant two-way and
three-way interactions produced variable effects on leaf area, number of tillers, shoot elongation, shoot biomass,
total root diameter, diameter of cortex, area of stele and diameter of xylem vessel. Main effect of endophyte
significantly increased leaf stomatal conductance and reduced diameter of xylem. Smaller leaf area was found in
endophyte-infected than control plants of three cultivars, both under WW and DS conditions, which indicates a cost
of endophyte infection to the host cultivars. Large root diameter and area of stele under WW conditions, as well as
small diameter of xylem vessels in some cultivars suggests that endophyte may improve efficiency for water uptake
and use under different water regimes. Less Root Cortical Aerenchyma (RCA) was observed in endophyte-infected
plants of Tully and Cayman than the control, which may influence plant capacity for resource acquisition in
Brachiaria. Genotype-specific variation among hosts generally segregated the cultivars in terms of their shoot and
root responses, based on presence (E+) or absence (E-) of endophyte. However, future studies should examine how
association of A. implicatum with Brachiaria grass affects capacity for water uptake and carbon accumulation, and
the role of RCA in these processes.
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Introduction
Prolonged and intermittent drought episodes present a major

limitation to forage productivity in sub-Saharan Africa, which
negatively affect feed availability in livestock production systems.
Although Brachiaria grass has a promising potential to fill this forage
gap, it is predominantly cultivated in South America [1]. Therefore,
widening its cultivation requires research to evaluate and select
cultivars with capacity to survive and perform better under severe
drought conditions experienced in sub-Saharan Africa.

Apart from their well-known role in plant protection against
invertebrate herbivores and pathogens, fungal endophytes that form
symbiotic associations with grass species have been shown to enhance
growth and persistence under drought conditions [2-5]. Beneficial
effects of endophytes on shoot traits such as tiller number leaf
expansion, and shoot biomass have been reported [6-8]. Mutualistic
associations of grass roots with endophytic fungi have also been
reported to increase capacity for water and nutrient uptake,
particularly under stress conditions [9].

Perennial grass infected with Neotyphodium endophytes in
temperate turf grasses is reported to alter host grass physiology, root
morphology and function, including increased root growth and
biomass, longer root hairs and decreased root diameter [10-12]. Due to

interactions of several factors, some cultivars may benefit from the
symbiotic associations while others may not experience benefit under
different environmental conditions. Such factors may include limited
water and low nutrient availability when Photosynthate is limiting, or
when the host is also in association with certain strains of mycorrhizae
[13-15].

Although several Acremonium species have been reported to
improve drought stress resistance in cool-season grasses, there is little
information on the role of endophytic colonization of tropical grasses.
Tropical forage grasses are grown on marginal lands with limited or no
agricultural inputs and their growth and survival depends on a wide
range of environmental stresses [16]. Previous studies have
investigated the role of A. implicatum mainly for its biocontrol
property against pathogens such as Drechslera fungal pathogen in
Brachiaria and against Meloidogyne incognita in tomato [1,17,18].
There has not been any detailed study on the effects of A. implicatum
on morpho-physiological responses of Brachiaria under drought stress
conditions. The objective of this study was to evaluate the effects of A.
implicatum endophyte on shoot and root growth and physiological
responses in selected cultivars of Brachiaria grass under drought stress.

Odokonyero et al., J Plant Biochem Physiol 2017, 
5:1

DOI: 10.4172/2329-9029.1000190

Research Article Open Access

J Plant Biochem Physiol, an open access journal
ISSN: 2329-9029

Volume 5 • Issue 1 • 1000190

Journal of 
Plant Biochemistry & PhysiologyJo

ur
na

l o
f P

lan
t Biochemistry &

Physiology

ISSN: 2329-9029



Materials and Methods

Plant material, treatments and growth conditions
Before transplanting, pre-germinated seedlings of five selected

Brachiaria cultivars (Basilisk, Tully, Marandu, Cayman and Mulato II)
were soaked in a solution of Tebuconazole (Folicur) fungicide at a
concentration of 0.6 mL/L (250 g a.i./L) for 6 hours [19]. Efficacy of
disinfection with the fungicide to eliminate natural endophytes was
evaluated by microscopic examination of plant leaves.

A total number of 60 seedlings of uniform sizes were selected and
transplanted in a greenhouse in transparent plastic cylinders covered
with PVC tubes (100 mm diameter and 800 mm length) containing 7
kg Oxisol. The soil was mixed at a 2:1 ratio of soil: sand (w/w), along
with six blank cylinders (bare soil without plants) for estimating water
losses by surface evaporation. The soil was fertilized to supply adequate
level of nutrients for Brachiaria grass as recommended by Rao et al.
[20]. Plants were grown under 12 hours daylight, maximum photon
flux density of 1200 μmol m-2s-1, mean temperatures of 19°C (night)
and 31°C (day), relative humidity of ~48% low and 94% maximum.
Two weeks after establishment, half (30) of the plants in the
greenhouse were inoculated with solution of A. implicatum (i.e., E+
plants) using a combination of foliar spray and soil drenching; while
the other half (30) were left as control (endophyte-free, E-) plants.

Plants were grown inside a greenhouse for four more weeks after
endophyte inoculation. A completely randomized block design was
used with three replicates for each of the treatment combinations
(endophyte-well-watered, E+_WW, no endophyte-well-watered, E-
_WW; endophyte-drought stress, E+_DS, no endophyte-drought
stress, E-_DS). After a total of six weeks of growth under WW
conditions (i.e., 50% field capacity), DS was imposed on half (30) of the
plants by stopping addition of water to DS plants for three weeks (21
days), while the other half (WW plants) were maintained at field
capacity by regular supply of water.

Plant growth and morpho-physiological characteristics, including
number of tillers, shoot elongation (length), leaf area (using Leaf area
meter model LI-3000, LI-COR, NE, USA), leaf stomatal conductance
(using leaf porometer, Decagon SC-1), and biomass, were determined.
Leaf stomatal conductance was determined on the most recent
expanded leaf. Measurements were performed daily between
10:30-12:00.

Microscopic detection of endophyte presence in plants and
analysis of roots

On harvest, the PVC tubes were removed and differences in root
growth along soil columns were visually analysed for the five cultivars.
Both shoot and roots were separated for microscopic analysis of
endophytes and root structural characteristics, as well as for biomass
determination. Plants were washed with water and four young roots

were cut 10 cm above the apex and then dipped in sterile distilled
water. Roots were cleared for 4 hours in 10% KOH at 60°C and
transferred into 70% ethanol overnight. The roots were then cleared in
2.5% NaOCl.

Thin root sections were made by free-hand using a sharp
entomological razor and stained with a Toluidine blue overnight. The
root sections were observed under a Microscope (Model: Carl Zeiss,
Göttingen, Germany) fitted with Axiocam ERc5 at ×400 magnification.
By appropriate scaling, area of the cortex and stele, and diameter of
root xylem vessels were determined in transverse sections.

Statistical analyses
A multivariate three-way ANOVA using General linear model

(GLM) was used to determine effects of endophyte (E), water regimes
(W), cultivar (C) and their interactions. Post Hoc tests were performed
for multiple comparisons of means (p=0.05) using SPSS software
version 21.

Results and Discussion

Effects of interactions
The study found a significant three-way interaction effects

(E×C×W) for variable traits, such as leaf area, root diameter, diameter
of cortex and area of stele, as shown by the ANOVA in Table 1.
Endophyte infection significantly reduced leaf area in three cultivars
(Tully, Marandu and Cayman) under WW and DS conditions (Figure
1a and 1b). In Tully, endophyte-infected plants had 11% and 12%
smaller leaf area under WW and DS conditions, respectively compared
with the control (p<0.05). For Marandu, leaf area reduced due to
endophyte by 4% under WW conditions, and this effect doubled (8%)
under DS conditions. Meanwhile, endophyte-infected plants of
Cayman had 11% smaller leaf area than in the control under WW
conditions (p<0.05); and no significant differences existed under DS
conditions (p>0.05).

Total root diameter in endophyte-infected plants of Basilisk was 6%
greater than in the control under WW conditions, but no significant
differences existed under DS conditions (Figure 1c and 1d). In Tully,
no significant difference in effect of endophyte was found under WW
conditions (p>0.05); whereas under DS, endophyte infection increased
total root diameter by 12% relative to the control (p<0.05). While in
Marandu, root diameter was 5% greater in endophyte-infected plants
than in the control under WW conditions, and no significant
differences occurred under DS conditions. Total root diameter of
Cayman was not significantly affected by endophyte infection under
WW conditions, but root diameter in endophyte-infected plants was
4% smaller in the control (p<0.05) under DS. In Mulato II, total root
diameter increased due to endophyte by 6% under WW conditions,
but decreased by 4% under DS compared with the control (p<0.05).

Source df Number of tillers
Stomatal conductance
(mmol m-2s-1)

Shoot elongation

(cm)

Leaf area

(cm2) Shoot biomass (g)

E 1 35(0.022) 143(0.037) 89(ns) 269(<0.0001) 0.77(ns)

C 4 881(<0.0001) 8204(<0.0001) 4784(<0.0001) 8062(<0.0001) 83(<0.0001)

W 1 154(<0.0001) 472(<0.0001) 357(0.002) 724 (<0.0001) 1595(<0.0001)
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E × C 4 31(0.002) 174(ns) 147(0.004) 33(0.016) 28(0.041)

E × W 1 3(ns) 57(ns) 130(ns) 2(ns) 11(ns)

C × W 4 12(ns) 83(<0.0001) 21(ns) 69(0.012) 6(ns)

E × C × W 4 8(ns) 71(ns) 56(ns) 57(0.027) 5(ns)

Error  6.3 40 32.7 18.6 11.4

Source df Root diameter (mm) Diameter of cortex (mm) Area of stele (mm2)
Diameter of xylem
vessels (mm) Total biomass (g)

E 1 0.012(0.019) <0.0001(ns) 451(ns) <0.0001(0.015) 0.92(ns)

C 4 0.044(<0.0001) 0.049(<0.0001) 32110(<0.0001) 0.001(<0.0001) 107(<0.0001)

W 1 0.031(<0.0001) 0.001(ns) 7463(0.001) 2.33 × 10-006(ns) 1815(<0.0001)

E × C 4 0.010(0.002) 0.013(<0.0001) 917(ns) 2.26 × 10-005(ns) 19(ns)

E × W 1 0.008(0.047) 0.023(<0.0001) 15435(<0.0001) <0.0001(ns) 14(ns)

C × W 4 0.006(0.0027) 0.009(0.001) 5680(<0.0001) <0.0001(<0.0001) 26(0.037)

E × C × W 4 0.019(<0.0001) 0.010(<0.0001) 1997(0.021) 5.88 × 10-006 (ns) 10(ns)

Error  0.002 0.001 611 1.54 × 10-005 13

Data presented are mean squares (MS) with p-values (in Parentheses). Significant level: p<0.05; ns=non-significant values.

Table 1: Results of three-way ANOVA for effects of Brachiaria cultivars (C), endophyte treatments (E), water regimes (W) and their interactions.

Diameter of root cortex (Figure 1e and 1f) in Basilisk was not
significantly affected by endophyte infection under WW conditions
(p>0.05), while under DS, endophyte-infected plants had 17% greater
diameter of cortex than the control (p<0.05). In Tully, endophyte
reduced diameter of cortex by 7% under WW conditions, but
significantly increased diameter of cortex under DS conditions by 22%
relative to the control. Diameter of cortex did not differ between
endophyte-infected and control plants of Marandu, both under WW
and DS conditions (p>0.05). However, endophyte induced significant
reduction in diameter of cortex of Cayman under WW and DS
conditions by 20% and 10%, respectively compared with the control.
Meanwhile, diameter of root cortex in endophyte-infected plants for
Mulato II was 8% greater than the control under WW conditions
(p<0.05), with no significant differences found under DS conditions
(p>0.05).

Endophyte infection increased area of stele in roots of Basilisk
under WW conditions by 6%, which was doubled (12%) under DS
conditions compared with the control (p<0.05; Figure 1g and 1h). In
Tully, area of stele in endophyte-infected plants was 11% greater than
the control under WW conditions, while no significant differences
existed under DS conditions. Area of stele in roots of Marandu was not
significantly affected by endophyte both under WW and DS conditions
(p>0.05). In Cayman, area of stele was 5% and 11% greater in

endophyte-infected plants than the control under WW and DS
conditions, respectively (p<0.05). Meanwhile, in Mulato II, no
significant differences were found under WW conditions, whereas area
of stele was 15% greater in endophyte-infected plants than the control
under DS.

Significant two-way interactions also existed for several response
variables. Cultivar × endophyte interaction produced 12% (p=0.001)
and 9% (p=0.005) greater number of tillers in endophyte-infected
plants of Tully and Marandu, respectively than their control (Figure
2a). Shoot elongation of endophyte-infected plants of Tully was 3%
higher than control (p=0.005), while endophyte-infected plants of
Marandu had 6% lower shoot elongation than the control (p<0.0001)
(Figure 2b). Increase in number of tillers and shoot elongation in
endophyte-infected Tully corresponded with 8% more shoot biomass
than the control (Figure 2c).

Interaction of cultivar × water regimes resulted into significant
differences in leaf area (p=0.012), stomatal conductance (p<0.0001),
area of stele (p<0.0001), diameter of xylem vessels (p<0.0001) and total
biomass (p<0.05). Under DS, leaf area in Tully, Marandu, Cayman and
Mulato II significantly reduced by 10%, 9%, 6% and 5% respectively,
compared with under WW conditions; while no significant differences
existed in Basilisk under WW and DS conditions (Figure 3a).
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Figure 1: Three-way interaction effects (E×W×C) on leaf area (a and b), root diameter (c and d), diameter of cortex (e and f), and area of stele
(g and h). E+= Endophyte treatment, E-= No endophyte treatment; WW= well-watered plants, DS=drought stressed plants Error bars are SE
of the means (n=3).

Citation: Odokonyero K, Acuña TB, Cardoso JA, Jimenéz JDLC, Rao IM (2017) Effect of Endophyte Association with Brachiaria Species on
Shoot and Root Morpho-physiological Responses under Drought Stress. J Plant Biochem Physiol 5: 190. doi:
10.4172/2329-9029.1000190

Page 4 of 10

J Plant Biochem Physiol, an open access journal
ISSN: 2329-9029

Volume 5 • Issue 1 • 1000190



Figure 2: Cultivar × endophyte interaction effects on number of tillers (a), shoot elongation (b), and shoot biomass (c). E+= Endophyte
treatment; E-= No endophyte treatment. Data presented are mean values (n=6) across water regimes. Error bars are SE of the mean.

Stomatal conductance significantly reduced due to DS in all
cultivars (Figure 3b), with greater reduction being observed in Basilisk
(26%), Tully (39%) and Marandu (31%) than in Cayman (22%) and
Mulato II (11%). Area of stele was greater in in three cultivars (Tully by
19%, Marandu by 17% and Cayman by 6%) under WW than DS
conditions (Figure 3c). However, area of stele in Mulato II was 8%
smaller under WW than under DS conditions; while in Basilisk
remained unaffected. Diameter of xylem vessels was significantly
smaller under WW conditions in Cayman (by 9%) and Mulato II (by
7%) than under DS conditions (Figure 3d). Total biomass significantly

reduced under DS conditions in all cultivars compared with WW
plants, where Mulato II showed the smallest reduction (by 13%).

Microscopic (visual) analysis of Root Cortical Aerenchyma (RCA)
showed less RCA in endophyte-infected plants of Tully and Cayman,
both under WW and DS conditions (Figure 4). In spite of the observed
differences in RCA endophyte-infected and control plants of Tully and
Cayman, no observable differences were detected in Basilisk, Marandu,
and Mulato II (data not shown).
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Figure 3: Interaction effects of cultivar × water regimes on leaf area (a), stomatal conductance (b), area of stele (c), diameter of xylem vessel
(d), and total biomass (e). WW= well-watered plants; DS= drought stressed plants. Data presented are mean values (n=6) across endophyte
treatments. Error bars are SE of the mean.
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Figure 4: Root Cortical Aerenchyma (RCA) development in endophyte-infected (E+) and control (E-) plants of Cayman and Tully under well-
watered (WW) and drought stress (DS) conditions.
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Main effects of endophyte, cultivar and water regimes
Main effect of endophyte infection resulted into 7% greater leaf

stomatal conductance than the control (Table 2). At the same time,
endophyte significantly reduced diameter of root xylem vessel by 3%
compared to the control (p<0.05). Leaf area was smallest in Tully with
71% smaller leaf area than that of Marandu, which had the largest leaf
area (Table 3). According to area of stele, main effects of cultivar
separated the cultivars into two groups, with Cayman and Mulato II
having statistically similar but larger area of stele than Basilisk, Tully
and Marandu. Under DS, number of tillers, shoot elongation and shoot
biomass reduced by 7% (p<0.0001), 5% (p=0.002), and 23%
respectively compared with those in WW plants (Table 4).

Endophyte status
Stomatal conductance
(mmol m-2s-1)

Diameter of
xylem(mm)

Endophyte (E+) 89.9 0.058

No endophyte (E-) 78.9 0.061

p-value (p<0.05) 0.037 0.015

Data presented are means (n=30) across cultivar and water regimes. Means are
statistically significant at p=0.05.

Table 2: Main effects of endophyte on stomatal conductance and
diameter of root xylem.

Cultivar Leaf area (cm2) Area of stele (mm2)

Basilisk 55.4b 191.7b

Tully 13.7a 181.2b

Marandu 79.5c 146.5a

Cayman 54.1b 246.5c

Mulato II 65.6c 274.7c

Data presented are mean values (n=12) for each trait. Superscripts with similar
letters are not significantly different (Tukey HSD tests of significance).

Table 3: Main effects of cultivar on leaf area and area of stele.

Water regimes Number of tillers
Shoot elongation
(cm)

Shoot biomass
(g/plant)

Well-watered
(WW) 19.8 89.1 27.6

Drought stress
(DS) 17.4 81.4 17.4

p-value (<0.05) <0.0001 0.002 <0.0001

Values presented are overall means (n=30) across cultivars and endophyte
treatment.

Table 4: Main effects of water regimes on shoot traits.

Variable effects of endophytes are related to high dependence of
host-endophyte associations on environmental conditions and genetics
of both host and endophyte [21-24]. In the present study, significant
three-way and two-way interactions influenced several traits, including
leaf area, total root diameter, diameter of cortex, area of stele, number

of tillers, shoot elongation, stomatal conductance, shoot biomass, and
diameter of xylem vessels (p<0.05).

A significant three-way interaction denotes that variation in the
phenotypic responses of specific Brachiaria cultivars was influenced by
endophyte presence under different water regimes [22]. Due to strong
cultivar-endophyte interaction under WW and DS conditions, some
sorting of cultivars may occur since discrimination by natural selection
would not simply depend on plant genotype as expected, but also on
the presence or absence of endophyte in the host [25]. Consequently,
genotypic variation in Brachiaria generally segregated the cultivars in
terms of their shoot and root responses, based on presence (E+) or
absence (E-) of endophyte.

The interactions are usually characterized by both benefits and costs
of endophyte infection to host plants [22]. For example, in some
cultivars, endophyte association increased number of tillers (in Tully
and Marandu), shoot elongation (in Tully and Marandu) and shoot
biomass (only in Tully), but reduced leaf area and diameter of xylem in
comparison with control plants (p<0.05). Establishment of new tillers
is essential toward biomass production, as well as for the perennation
of Brachiaria and sustainable production of tropical grasslands.
Growth of new tillers is controlled by several interacting physiological
and environmental variables within individual tillers [26,27].
Endophytic ability to stimulate osmotic adjustment in host plants was
proposed to partly explain how endophytes enhance tiller growth and
number, and increase in stomatal conductance [28]. This is also
demonstrated by the main effect of endophyte infection producing
significant increase in stomatal conductance, which could contribute to
increased photosynthetic carbon assimilation per unit leaf area [29,30].
Allocation of photosynthates from source to sinks could therefore
stimulate growth of new tillers [31,32].

Several studies have also reported greater number of tillers in
endophyte-infected than endophyte-free plants of some genotypes in
[6,18,25,33,34]. In contrast, Cheplick [35] found less number of tillers,
leaf area and biomass in some endophyte-infected genotypes of
perennial ryegrass than in endophyte-free plants under both irrigated
and drought conditions. Decrease in leaf area due to endophyte
infection in some cultivars could be ascribed to either resource
allocation to tiller base and root or to endophyte metabolic use of
photosynthates supplied by the host [21,36-38].

Reduction in leaf area of Tully, Marandu and Cayman both under
WW and DS conditions therefore indicates a cost of endophyte
infection to these host cultivars; while Basilisk and Mulato II remained
unaffected. Similarly, Cheplick and Cho [25] reported that four
genotypes of perennial ryegrass (Lolium perene) had less leaf area
when infected with Neotyphodium lolii while two genotypes were
unaffected. Such variation has been suggested to arise due to strong
influence of host genotypes on the concentration and distribution of
endophytic hyphae within leaves [39]. Therefore, genotypic variation
among Brachiaria cultivars, in relation to their evolutionary ecology
and response to endophyte infection under WW and DS conditions,
probably accounted for the different responses observed [22].

Larger root diameter and area of stele found in endophyte-infected
plants of four cultivars under WW conditions implies greater root
hydraulic than in the control. In addition, a large root system in
Brachiaria has been suggested to maximize carbon assimilation under
conditions of available soil water [40-43]. However, this may not be so
under DS because, increased efficiency for maintaining water
acquisition and plant productivity under DS occurs for small root
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diameter and small diameter of xylem vessels [41,44,45]. In addition to
significant main effect of endophyte in reducing diameter of xylem
vessel, reduction in root diameter (in Cayman and Mulato II),
diameter of cortex (Cayman), and area of stele (in Basilisk, Cayman
and Mulato II) under DS indicates an adaptation for conservative
water use under DS conditions [40,41,46-48].

Respective decrease and increase in diameter of cortex due to
endophyte in some cultivars under WW and DS conditions may be
due to changes in cellular osmotic conditions. Low cellular osmotic
adjustments in endophyte-infected plants under WW conditions might
induce less turgor and less cell expansion within the cortex. This is
because high osmotic adjustments under DS could be associated with
increased cell turgor and more cell wall expansion and larger diameter
of cortex in endophyte-infected plants (of Basilisk and Tully) than in
the control under DS. However, this may not be so for all cultivars as
demonstrated in the results [49].

Significant development of RCA in nodal roots of Tully has been
reported both under well-drained and waterlogged conditions [50].
Previous study suggested that RCA increases nutrient and water
acquisition, and therefore improves plant performance by reducing
metabolic (carbon) cost of soil exploration under DS in maize [52].
However, Yang et al. [53] reported that RCA impeded radial movement
of water through root cortex and reduced water uptake in rice under
DS. Despite the conflicting results, previous studies did not assess how
RCA formation might be affected by endophyte infection. In the
present study, low RCA development in endophyte-infected plants of
Tully and Cayman may affect capacity of plants toward water and
nutrient extraction for plant growth. However, it is necessary that
future studies examine how endophyte association could affect
capacity for water uptake and carbon accumulation in relation to RCA
formation in Brachiaria grass.

The study shows that DS had a profound effect on stomatal
conductance. Significant reduction in leaf stomatal conductance under
DS substantially hinders carbon assimilation [30]. This could be
responsible for the significant decrease in total biomass in all cultivars
under DS. Large size of root anatomical features accounts for
difference in water extraction ability in Brachiaria under water stress
[43,54,55]. This implies that Cayman and Mulato II have superior
water extraction ability than other cultivars, as demonstrated by their
larger area of stele compared to other cultivars.

Conclusion
The present study showed significant two-way and three-way

interactions on several response variables. Interactions of endophyte
with specific cultivars increased number of tillers in two cultivars and
increased shoot biomass in one cultivar. However, most traits were
mirrored by interaction of endophyte × water regime × cultivar; which
generally reduced leaf area in endophyte-infected plants of two
cultivars both under WW and DS conditions. Main effect of endophyte
significantly increased leaf stomatal conductance and reduced
diameter of xylem vessels. Total root diameter was larger under WW
but smaller under DS in endophyte-infected plants of some cultivars
compared to control plants. Large root diameter and area of stele
under WW conditions, as well as small diameter of xylem vessels
under DS observed in the study may be associated with endophyte-
regulated adaptation toward efficient water uptake and use under WW
and DS conditions, respectively. Low RCA observed in endophyte-
infected plants of two cultivars (Tully and Cayman) may affect plant

potential toward water and nutrient acquisition for plant growth. It is
proposed that significant benefits from the endophyte might be
negated by endophyte metabolic demand for photosynthate supplied
by the host. However, it is necessary that future studies examine how
endophyte association affects capacity for water uptake and carbon
accumulation in relation to RCA formation in Brachiaria grass.
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