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Abstract

Background: Patients presenting with a transient ischemic attack (TIA) are at high risk of stroke despite current
treatments. Elevated blood pressure variability (BPV) and vascular dysfunction are known to increase the risk of
stroke in TIA patients. Therefore, improving these hemodynamic parameters could help reduce stroke incidences in
these patients.

Aim: The proposed study will investigate the efficacy of dietary nitrate supplementation on cardiovascular and
cerebrovascular hemodynamics in patients recently diagnosed with TIA.

Methods: This study is a randomized, placebo-controlled, parallel group clinical trial, with patient recruitment
based on strict inclusion/exclusion criteria. Newly diagnosed patients who present within 48 h of symptom onset will
be assessed to ascertain their post-TIA, pre-treatment baseline cardiovascular and cerebrovascular parameters.
These will include: beat-to-beat BPV, cerebrovascular CO2 reactivity and cerebral autoregulation (indices of
cerebrovascular health), brachial artery diameter, central and peripheral blood pressures, vascular risk factors (i.e.
resting blood pressure), and plasma nitrate/nitrite concentration. Following pre-treatment assessment, participants
will be randomized to take either 7-day dietary nitrate supplementation (sodium nitrate in capsules, 10 mg/kg/day) or
7-day placebo. An identical follow-up assessment will be implemented post-intervention.

Conclusion: This study will lay the foundation for clinical trials to assess the therapeutic potential of dietary
nitrate supplementation as a secondary strategy for stroke prevention in high-risk patients.

Keywords: Stroke; Transient ischemic attack; Cerebral blood flow;
Cerebral oxygenation; Dietary nitrate supplementation

Introduction
Ischemic stroke is a devastating disease which accounts for ~70% of

all strokes worldwide [1], with limited secondary prevention strategies.
Transient ischemic attack (TIA) precedes around one-quarter of all
ischemic strokes [2]. Despite current treatments, ~7-23% of TIA
patients experience recurrent TIAs or ischemic strokes within the first
week of symptom onset [2-5]. It is known that increased systolic blood
pressure variability (BPV) and vascular dysfunction are associated with
early stroke recurrence after ischemic stroke and TIA [6-8]. But there
are currently no therapeutic treatments to dampen BPV and improve
vascular function in this high-risk patient group.

Nitric oxide (NO) is a potent regulator of vascular tone, which can
be produced from a number of different sources [9,10]. NO production
by endothelial NOS (eNOS) plays a crucial role in cardio- and
cerebrovascular hemodynamic regulation, and is neuroprotective
following ischemic stroke [9,10]. In animal models of ischemic stroke,

administration of NO donors or intra-arterial L-arginine increases
eNOS activity and regional CBF, and reduces infarct volumes [11-13].
Basal NO release inhibits platelet and leukocyte aggregation, and
reduces microvascular permeability [14-16]. Besides endogenous NO
production by eNOS, the other major source of nitrate is from diet
[17]. Dietary inorganic nitrate is reduced to nitrite within the saliva
[18], and further reduced to NO by red blood cells [19]. In healthy
populations, dietary nitrate improves cerebral blood flow (CBF)
regulation [20], and abolishes hypoxia-induced endothelial
dysfunction at high altitude [21]. Similarly, dietary nitrate
supplementation has been shown to improve vascular function and
carotid artery stiffness, and reduce systolic blood pressure (BP) in
elderly populations with moderate cardiovascular risk [22,23]. Dietary
nitrate could be a safe and effective strategy for dampening BPV and
improving vascular function.

Currently, we know little about the hemodynamic effects of dietary
nitrate supplementation on high-risk TIA patients. Establishing the
biological effects of increased NO bioavailability on BPV and
cerebrovascular function in TIA patients is a necessary first step
towards an effective clinical translation of this potential therapeutic

Fan et al., J Clin Trials 2016, 6:6 
DOI: 10.4172/2167-0870.1000293

Protocol Open Access

J Clin Trials, an open access journal
ISSN:2167-0870

Volume 6 • Issue 6 • 1000293

Jo
ur

nal
 of Clinical Trials

ISSN: 2167-0870

Journal of Clinical Trials

mailto:mickey.fan@otago.ac.nz


strategy. The goal of the proposed study is to examine the role of NO
bioavailability in BP and CBF regulation. We test the hypothesis that
increasing NO bioavailability with dietary nitrate supplementation
dampens BPV and improve cerebrovascular functions in TIA patients.

Patient population
All suspected TIA referrals will be reviewed by a neurologist at the

Wellington Hospital and appropriate diagnostic tests undertaken
(stroke classification, computed tomography scan, computed
tomography angiography scan, magnetic resonance imaging, magnetic
resonance angiography imaging, carotid ultrasound imaging,
echocardiography, electrocardiogram) including the National Institutes
of Health Stroke Scale (NIHSS) and modified Barthel Index.

Patients diagnosed with an acute TIA will be recruited within 48
hours of symptom onset. The TIA cohort is likely to benefit from
dietary nitrate supplementation because these patients are at high risk
of early or recurrent stroke, which is associated with BPV and vascular
dysfunction [6-8]. Aside from nitrate supplementation, patients will be
managed according to routine clinical practice. Inclusion and exclusion
criteria are detailed in Table 1.

Inclusion criteria Exclusion criteria

Individuals aged 40-85 diagnosed
with TIA (with ABCD2 score ≥ 4), after
review by a neurologist at Wellington
Hospital.

Individuals requiring supplementary
oxygen

Allergic to nitrates

Unstable cardiac conditions or angina

Uncontrolled diabetes mellitus

Major medical conditions

Significant cognitive impairment

Immobility

Age >85 years

TIA symptom onset >48 h

Table 1: Inclusion and exclusion criteria.

Methods

Experimental design
This is a single-center, placebo-controlled, single-blinded,

randomized, parallel group clinical trial. This study is designed to
ensure the reflection of a potential real-life application of a dietary
supplementation intervention for TIA patients following diagnosis
(Figure 1). The patients will visit the laboratory on two occasions,
which will consist of a pre-treatment assessment (visit one) and a

follow-up assessment one week later (visit two). Once recruited,
patients will undergo pre-treatment assessment as a part of their
clinical assessment with the neurology department. Thereafter, patients
will receive either nitrate supplementation (sodium nitrate) or placebo
for seven days. An identical assessment will be performed at the
follow-up experimental session.

Figure 1: Schematic diagram of study design.

Dietary nitrate supplementation
Oral sodium nitrate capsules (10 mg/kg/day) will be ingested three

times a day with each meal, for seven days. This dosage has been
shown to elevate plasma nitrate (580%) and nitrite (180%) [24]. Those
patients assigned to the placebo group will be given identical-looking
capsules containing microcrystalline cellulose. All of the patients will
be instructed to avoid using mouthwash during the intervention
period as it has been shown to abolish the effect of dietary nitrate on
plasma nitrite/nitrate levels [25].

Experimental procedures
Each experimental testing session will comprise of: i) 20 min

instrumentation; ii) venous blood sample; iii) 10 min resting baseline;
iv) CO2 reactivity; and v) flow-mediated dilatation (FMD). All of the
measurements will be conducted with the participants resting in a
supine position. Primary and secondary outcomes are outlined in
Table 2.

Dependent variable Procedure/measures

Primary

Beat-to-beat blood pressure variability Finger photo plethysmography will be used to continuously monitor peripheral blood pressure

Cerebral autoregulation Relationships between beat-to-beat blood pressure, middle cerebral artery blood velocity (MCAv) and cerebral
oxygenation will be assessed using wavelet analysis.

Cerebral CO2 reactivity MCAv will be assessed using Transcranial Doppler ultrasonography (TCD) during CO2 breathing and voluntary
hyperventilation to increase and decrease end-tidal partial pressure of CO2 (+/-5 mmHg).
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Flow-mediated dilatation Brachial blood flow response will be assessed during, and post 5-min forearm occlusion.

Secondary

Central & Peripheral blood pressures Pulse wave analysis will be employed to assess central blood pressure, augmentation index and arterial stiffness.

Vascular risk factors Resting systolic and diastolic blood pressure.

Body weight and body mass index.

Plasma nitrate/nitrate concentration Resting venous blood sample.

Table 2: Study outcomes measured at pre-treatment baseline and post-treatment follow-up.

CO2 reactivity test
Cerebrovascular function will be assessed using a dynamic CO2

reactivity test previously described by Peebles et al. [26]. Guided by a
metronome, the patients will be instructed to breath at a rate of 12
breaths/min throughout the CO2 reactivity test. A CO2 gas mixture
(5% CO2, 21% O2 in nitrogen) will then be administered using a
facemask, to progressively elevated the patient’s partial pressure of end-
tidal CO2 (PETCO2) to ∼5 mmHg above their resting values over a
∼120 s period. Following a 30 second recovery period, the patients will
be instructed to increase their tidal volume to lower PETCO2 to ∼5
mmHg below their resting value for ∼120 s.

Flow-mediated dilatation
Endothelial function will be assessed by measuring flow-mediated

dilatation of the left branchial artery. In brief, the left brachial artery
will be visualized 2 to 10 cm above the elbow with a 10-Mhz Duplex
Doppler ultrasound system (T3200, Terason, Burlington, MA, USA). 1
minute after acquisition of the baseline diameter, the forearm cuff
immediately distal to the elbow will be inflated to 200 mmHg for 5
minutes. The arterial diameter will be continuously recorded for 1
minute prior to and 3 minutes following the cuff release.

Measurements
Plasma nitrate/nitrite concentration: A venous blood sample will be

drawn from a catheter in the forearm antecubital vein. The samples
will be placed in ice and subsequently centrifuged at 2000 rpm for 10
min (Sigma 2-4 centrifuge, Sigma, Osterode am Harz, Germany). The
plasma will then be removed and frozen at -80°C pending analysis of
plasma nitrate/nitrite concentration.

Cerebrovascular parameters: Middle cerebral artery blood flow
velocity (MCAv, as an index of cerebral perfusion) will be measured
bilaterally from the middle cerebral arteries using a 2-MHz pulsed
transcranial Doppler ultrasound system (ST3, Spencer technology,
Seattle, USA). The ultrasound probes will be positioned over the
temporal windows and held firmly in place with an adjustable
headband (Marc 600 Head Frame, Spencer Technology, Seattle, USA).
The signals will be obtained by first locating the bifurcation of the
middle and anterior cerebral arteries; the angle and depth of
insonation will then be adjusted to obtain measurements from the
MCA. The insonation depth and the velocity of MCA signals will be
recorded and compared to ensure within-subject repeatability of
MCAv measurements between visits. Cerebral tissue oxygenation in
the bilateral prefrontal cortex will be assessed by monitoring changes
in total-, oxy-, deoxy-, delta-hemoglobin concentrations and cerebral
O2 saturation obtained with spatially resolved, continuous wave Near-

infrared spectroscopy (NIRS, Oxiplex TS, ISS Inc., Champaign, IL,
USS).

Cardiorespiratory parameters: Beat-to-beat means arterial BP will
be monitored using finger plethysmography (Vinometer® MIDI,
Finapress Medical Systems, Amsterdam, Netherlands). In addition,
peripheral and central blood pressures will be estimated using Pulse
Waveform analysis (BP+, Uscom, Sydney, Australia). A three-lead
electrocardiogram will be used to determine heart rate (ML132 bio
amp, ADInstruments, Dunedin, New Zealand). Partial pressure of end-
tidal oxygen and carbon dioxide will be sampled using a plastic nasal
cannula inserted into the left nostril, and analyzed using a fast-
responding gas analyzer (ML206 gas analyzer, ADInstruments,
Dunedin, New Zealand). Prior to each experimental session, the gas
analyzer will be calibrated using precision gas mixture of know O2 and
CO2 concentrations.

Sample size estimate
The sample size estimate was based on published [20,27] and

unpublished data from our laboratory, which assessed the effects of
dietary nitrate on cerebrovascular function. These were used to
estimate a physiologically relevant improvement in cerebrovascular
CO2 reactivity of 16% between the two randomized groups. Assuming
that dietary nitrate supplementation can improve cerebrovascular
function by a similar extent, a total sample size of 34 patients is needed
(i.e. 17 patients per group). Assuming a participant drop-out rate of
10%, 38 TIA patients will be recruited into this study. This sample size
would provide >80% power to detect a moderate effect size that
corresponds to a~16% difference in cerebrovascular function between
treatment and placebo, assuming a standard deviation of 0.65%/
mmHg at a two-tailed significance level of 0.05.

Data analysis
Participant compliance and adherence to the assessment and

intervention will be monitored throughout the study. Baseline
characteristics of the two study groups will be described by means and
standard deviations. The key independent factor is treatment status,
and we will control for the time of day which is a potential
confounding factor. Mixed model linear regression (unstructured,
different variance and correlation between measurements assumed)
(IBM SPSS Statistics version 23, IBM Corporation, Armonk, NY,
USA) will be performed to evaluate the main effects of treatment
(placebo vs. treatment) and time (baseline and follow-up) on primary
and secondary outcomes. Post-hoc tests will be performed using the
Holm-Sidak adjustment for multiple comparisons.
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Current status of the trial
The study was started in September 2015 and the estimated

completion date is December 2017. As of November 2016, 21 patients
have been recruited.

Discussion
TIA is defined as a ‘transient episode of neurological dysfunction

caused by cerebral, spinal, or retinal ischemia without acute infarction,
as assessed using available imaging’ [28]. Vascular dysfunction such as
carotid stenosis is associated with early recurrences after ischemic
stroke, and is a risk marker for recurrent stroke after a TIA [6-8]. The
overarching goal of the proposed study is to assess the therapeutic
effects of increasing NO bioavailability on BPV and vascular function
following a TIA event.

Nitric oxide in neuroprotection
There are two possible pathways by which increasing NO

bioavailability may confer protection against stroke (Figure 2). First, by
improving perfusion to penumbral tissue and neuronal survival, which
reduces infarct volume and improves functional outcome? In mouse,
rat and sheep models of ischemic stroke, administration of L-arginine,
NO donors, and NO inhalation has been shown to reduce infarct
volumes and improve neurological functions [11-13,29]. These authors
attributed these improvements in stroke outcome to dilation of
cerebral arterioles in the ischemic penumbra, thereby improving blood
flow to under-perfused regions of the brain. Meanwhile, a recent
multi-center clinical trial failed to observe any improvements in
functional outcome in acute stroke patients following 7-days of
transdermal glyceryl trinitrate treatment [30]. However, since the
transdermal glyceryl trinitrate has no effect on cerebral perfusion
following stroke [31-33], it is likely that transdermal nitrate
administration did not improve penumbral perfusion. In contrast,
dietary nitrate has been shown to modulate CBF response to visual
stimulation in healthy participants [20,27]. The authors attributed
these findings to an enhanced neurovascular coupling associated with
dietary nitrate supplementation.

Figure 2: Summary of therapeutic strategies of increasing NO
bioavailability.

In stroke management, increasing NO bioavailability with L-
arginine, NO donors and NO inhalation has been shown to reduce
infarct volume by improving penumbral blood flow and reducing

reactive oxygen species in animal models of ischemic stroke
[11-13,29]. In contrast, large multi-center clinical trials did not observe
improvements in functional outcome with transdermal glyceryl
trinitrate patches [30]. This study aims to explore the effects of
increasing NO bioavailability on blood pressure variability and
vascular function in TIA patients. Findings from this study will be the
crucial first steps towards translational studies into the use of dietary
nitrate as a secondary preventive strategy for stroke.

Second, increasing NO bioavailability could reduce the risk of
stroke in high-risk populations via dampening BPV and improving
endothelial function. In patients with cardiovascular risk factors and
hypertension, dietary nitrate improves peripheral vascular function
and aortic stiffness, and reduces resting BP [22,23]. Similarly, dietary
nitrate supplementation improves vascular function and lowers systolic
BP in healthy populations [21,27,34]. Collectively, these studies
demonstrate a therapeutic benefit of dietary nitrate on vascular
function in both healthy and clinical populations. However, the effect
of dietary nitrate on BPV remains unclear. The goal of this study is to
assess the effect of dietary nitrate supplementation on BPV and
cerebrovascular function during the 7-day period following a TIA,
when the incidence of stroke is the highest [2,3]. Such intervention
strategy could be used to both reduce the stroke risk in TIA patients
and provide neuroprotection following acute stroke (Figure 2).

Dietary nitrate supplementation
Ingestion of dietary nitrate has been shown to elevate plasma nitrate

and nitrite, and lower BP in a dose-dependent manner, with reduced
BP observed following ingestion of ≥ 8.4 mmol of inorganic nitrate
[35,36]. However, these studies found beetroot juice had greater
potency in lowering BP compared to nitrate salt, presumably due to
additional polyphenols and antioxidants in beetroot. Nevertheless,
studies have reported improvement in vascular function and reduced
BP ∼3h post ingestion of nitrate salts (5-8 mmol) [21,37]. Similarly, 3-
day sodium nitrate supplementation (0.1 mmol/kg/day) enhanced
neurovascular coupling during visual stimulation [27]. Based on these
findings, we expect the proposed dosage of nitrate supplementation
(∼9.0 mmol/day) will be sufficient to observe any BP and
cerebrovascular hemodynamic effects after 7 days.

Hemodynamic variability
According to conventional wisdom, high BP (i.e. hypertension) is

the biggest risk factor for stroke. However, a growing body of evidence
suggesting that dramatic variation in BP is another important
independent risk factor for stroke and poor neurological outcomes.
Accentuated fluctuations in BP results in hypo- and hyper-perfusion
insults to vital organs like the brain, which can destabilize cerebral
tissue oxygenation and lead to blood-brain barrier breakdown [38]. We
recently observed greater dynamic BPV, but not CBF variability, in TIA
patients compared to healthy controls [39]. Meanwhile, others have
reported visit-to-visit variability in systolic BP, independent of average
resting systolic BP, to be a strong predictor of subsequent stroke in TIA
patients [8]. Following acute ischemic stroke, augmented systolic BPV
is associated with severe hemorrhagic transformation [40] and poor
early outcomes [41]. Conversely, reduced successive variability of
diastolic BP has been shown to be a predictor of favorable long-term
outcome [42]. These findings indicate that accentuated BPV adversely
increases the risk of stroke in TIA patients, and leads to poorer
outcome following ischemic stroke. Dampening BPV should be one of
the main focuses of therapeutic treatment in these clinical populations.
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Whilst dietary nitrate supplementation has been previously shown to
lower resting BP [22,23], its effects on BPV remains unknown.

Cerebrovascular function
Two of the most commonly used techniques to assess cerebral

hemodynamic integrity in cerebrovascular research are
cerebrovascular CO2 reactivity and cerebral autoregulation (CA).
Cerebrovascular CO2 reactivity is the CBF’s response to CO2, and it
represents the dilatory and constrictive capacity of the cerebral
arterioles to CO2. In the absence of major arterial stenosis, reduced
cerebrovascular CO2 reactivity is assumed to reflect increased stiffness
of the arteriolar walls [43]. In clinical populations, low cerebrovascular
CO2 reactivity is a predictor for ischemic stroke and TIA in patients
with severe carotid artery stenosis or occlusion [44-46]. Meanwhile,
CA reflects the dynamic myogenic, neurological, and metabolic
vascular responses to changes in perfusion pressure in order to
maintain reasonably constant CBF [47]. Impairment in dynamic CA
results in concurrent fluctuations in mean CBF with fluctuations in
arterial BP, thereby increasing susceptibility of white matter damage
during these BP fluctuations [48]. Further, CA impairment is
associated with various subtypes of stroke [49,50] and carotid artery
stenosis [51]. These findings implicate impaired cerebrovascular
function in the development of stroke. Cerebrovascular indices such as
cerebrovascular CO2 reactivity and CA provide invaluable information
on the therapeutic effects of dietary nitrate on cerebrovascular health.

Flow-mediated dilatation
FMD of the brachial artery is the most commonly used technique to

study endothelial function in vivo [52]. This non-invasive, ultrasound-
based method first described by Celermajer et al [53], involves the
assessment of peripheral conduit artery diameter following a period of
distal limb ischemia. FMD has been shown to correlate well with
coronary artery endothelial function [53], and is an independent
predictor of cardiovascular disease [54]. The principal mediator of
FMD response is endothelium derived NO [55], and studies have
consolidated the link between increases in flow, wall shear stress,
eNOS expression and NO bioactivity [56]. Therefore, FMD is an ideal
tool for assessing the effect of dietary nitrate supplementation on
endothelial function.

Stroke is a devastating disease with limited acute therapeutic
options to improve outcomes. The proposed human trial will be the
first to determine whether dietary nitrate supplementation has any
positive therapeutic effects on BPV and cerebrovascular function in
high-risk TIA patients. The data generated from this study will lay the
foundation for future clinical trials to assess the role of dietary nitrate
supplementation on stroke prevention and BP management. Such
supplementation would be very cost-effective to implement, readily
available, and could result in major healthcare gains for a clinical
population that is over-represented among disabled individuals
worldwide.
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