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Factor (F) VIII biology: intracellular processing and 
expression

FVIII is a key cofactor in the generation of a blood clot along with 
activated FIX. FVIII is translated as a 2,351 amino acid (aa) protein, 
which includes 3 A-domains, 2 C-domains and a poorly conserved 
B-domain [1,2]. FVIII is a cofactor in FIX activation [3]. The liver and 
spleen are the main sites of FVIII production [4]. FVIII is synthesized 
in the rough endoplasmic reticulum (RER) in association with the 
chaperone protein BiP and requires cleavage by PACE/furin [5].
Transportation to the Golgi specifically requires LMAN1 (ERGIC-53) 
and MCFD2 [6,7].FVIII is poorly processed in a number of cell lines 
[8], often leading to detectable apoptosis [9]. Altering FVIII by partial 
removal of the B domain, or leaving a 226 amino acid (aa) N-terminal 
fragment with 6 Asn putative N-glycosylation residues, or a FVIIIF309S 
mutation increases secretion without significantly affecting circulation 
time or co-factor activity [10,11]. In most cell lines, the majority of 
hFVIII is cleaved, releasing complexed, two-chained FVIII, the heavier 
N-terminus chain and lighter C-terminus chain, into the circulation. 
However, FVIII can also be stored in granules [12]. In endothelial cells, 
trafficking of FVIII to Weibel-Palade bodies is dependent on its carrier, 
von Willebrand factor (vWF) [13].For ectopically expressed FVIII in 
developing megakaryocytes, we have shown that  FVIII is not secreted, 
but rather stored in alpha-granules, largely independent of vWF [14].

Clinical challenges in hemophilia A 

FVIII deficiency (hemophilia A) is X-linked, affecting ~1:5,000 
live male births [15]. Most patients have a severe form with extremely 
low endogenous FVIII function (<1%) and spontaneous major bleeds. 
Recombinant FVIII therapy eliminates many of prior concerns with 
plasma-derived products, but often at a high cost which can exceed 
$600,000/year [16].Prophylactic infusions of FVIII lead to fewer 
chronic joint changes or other major complications [17,18]. Therapeutic 
strategies using prophylaxis have in fact limited the number of joint 
and other target organ complications, but a remaining major challenge 
is the development of  FVIII inhibitors in 20-30% of patients.[19] Such 

patients are often treated with FVIII bypass products [20] or with 
recombinant FVIIa [21] or by inducing tolerance [22] or immune 
suppression [23,24]. These therapies are often insufficient. Bleeding 
complications are common because of the lower efficacy of second tier 
replacement strategies. Subsequently, these patients have more target-
organ damage with associated higher costs [25]. A strategy that would 
provide FVIII replacement in a manner resistant to inhibitors may 
then be of particular value in the care of these patients.

Novel approaches for the treatment of the hemophilias

Liver transplantation cures hemophilia A [4], but is associated with 
significant morbidity and mortality. Another non-vector potential 
therapy for the hemophilias, ribosomal read-through drugs, may 
prove useful in the treatment of patients with appropriate codon 
substitutions [27]. Other non-vector strategies include implantation 
of FVIII-expressing fibroblast [27] or endothelial cells [28]. So far 
these approaches have resulted in either low efficacy and/or poor 
long-term expression in animal models. Recent murine studies using 
either embryonic stem (ES) cells [29] or induced pluripotent stem (iPS) 
cells [30] that can undergo endothelial cell differentiation and express 
FVIII have been used as a proof-of-principle for stem cell therapy for 
hemophilia A. Finally, in FIX deficient (hemophilia B) mouse models, 
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Abstract
Hemophilia A is the most common inherited bleeding diathesis and is due to a deficiency of functional coagulation 

factor (F) VIII. Most patients have a severe deficiency and require a program of prophylactic plus acute infusions 
of recombinant FVIII to prevent significant joint and other target organ damage. One of the greatest challenges 
remaining in the care of these patients is that one fifth to third of the patients develop inhibitors to the infused 
proteins. While a significant portion of such inhibitors can be either overcome or the inhibitors eliminated, some 
patients with persistent and significant titers of inhibitors need to rely on second tier therapies that are not as effective 
at preventing significant bleeding morbidity or mortality. A number of groups have been developing therapeutic 
strategies for FVIII gene therapy for this disorder. Virtually all of these therapies have in common a rise in the plasma 
level of FVIII, and interpretation of their efficacy is straightforward related to levels achieved. However, several 
groups have also shown that FVIII can be ectopically expressed in developing megakaryocytes, where although 
plasma FVIII levels remain undetectable, this FVIII can be released and be effective at sites of platelet activation. 
Moreover, it is clear that this platelet (p) FVIII is protected to a degree from inhibitors, making pFVIII a particularly 
attractive strategy for gene therapy for hemophilia A. Yet at the same time, we have shown that pFVIII has a different 
availability and distribution in a growing thrombus than plasma FVIII. The clinical implications and challenges of 
these findings as murine and canine hemophilia A preclinical studies go forward with pFVIII are discussed. 
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gene-editing using zinc finger nucleases to introduce a corrected 
gene sequence using adeno-associated virus (AAV) delivery has been 
successful in ameliorating this bleeding disorder [31].

Hematopoietic lentiviral-based gene therapy

Most gene therapy strategies for hemophilia A involve FVIII-
expressing plasmids, retroviruses, lentiviruses, adenovirus and AAV 
insertions into liver or endothelial cells or hematopoietic cells [32,33]. 
All strategies that target dividing cells, such as hematopoietic stem 
cells, involve random genomic insertions and an increased risk of 
oncogenesis. Studies using retroviral gene therapy for X-linked severe 
combined immunodeficiency patients have found that many patients 
treated with this retroviral vector developed leukemia [34]. However, 
newer studies offer more encouraging news: with increased experience 
and modified conditioning regimens, improved outcomes have been 
observed without oncogenetic risks after more than a 4-year follow-
up of additional immune deficient patients treated with a different 
retrovirus vector [35].

At the moment, lentiviral vectors are generating the greatest 
interest in bone marrow gene therapy. These vectors have been 
attenuated by deletion of virulence genes, have tissue-specific 
promoters, have insulator elements to limit genomic read-thru along 
with self-inactivators (SIN) in the long-terminal repeats [36]. They 
offer the additional advantage of being able to affect cells that are not 
rapidly dividing with reasonable efficiency. Several groups have used 
lentiviral vectors with ubiquitous promoters to drive plasma FVIII 
expression from hematopoietic tissues [32,37,38]. Some of these 
groups have examined porcine FVIII (instead of human) because 
the expression of the porcine FVIII is significantly higher than 
hFVIII despite sharing 83% sequence homology (10-100-fold higher 
expression) due to improved secretion [39,40]. In a mouse model of 
hemophilia A, substitution of parts of the porcine A1 and A3 domains 
into a chimeric protein produced by genetically modified hematpoietic 
stem cells resulted in high levels of expression of the chimeric protein 
in plasma of the animals [41]. This initial study used a murine stem 
cell virus that would only work in murine cells and so subsequently, 
the group published a study using a lentiviral vector which was used to 
transfect   stem cells which were then injected into lethally irradiated 
Hemophilia A mice [42]. In this study, the authors reported mean 
plasma FVIII expression levels of 0.13 units/ml. These studies utilized 
a CMV promotor so that all cells expressed the chimeric FVIII protein.

Additional reports have appeared on long-term tissue-specific 
expression of globins in murine and macaque erythrocytes [43]. 
European clinical trials have begun to test these strategies in patients 
with thalassemia major and have shown improvement in transfusion 
needs. Whether these efforts in more immunologically intact patients 
with lentiviruses will be free of oncogenic concerns remain to be seen 
[44].

pFVIII gene therapy for hemophilia A

Our laboratory has for more than 10 years been pursuing the 
targeted delivery of therapeutics to sites of vascular injury using 
platelets to modulate clotting, enhance fibrinolysis or inhibit 
angiogenesis. We have published the development of anti-thrombotic 
thrombocytes that deliver ectopic urokinase in platelets to sites of 
injury with no systemic fibrinolysis [45]. We have also demonstrated 
the use of platelet-specific delivery for the ectopic expression of pFVIII 
in the treatment of hemophilia A. Initial motivation for these studies 
was that hemophilia A is relatively common and is often associated 

with the development of inhibitors. We hypothesized that platelet-
stored FVIII might be protected from such inhibitors. Moreover, the 
structurally and functionally related protein FV [46] was synthesized 
in megakaryocytes and stored in alpha-granules to be released at sites 
of injury [47]. Finally the carrier protein vWF for FVIII is normally 
expressed and stored in alpha-granules [48], and perhaps might 
enhance the targeting of FVIII to the same granules.

Studies of pFVIII transgenic mice wherein the FVIII expression 
is driven by the proximal 2.5 kb of the GpIba promoter [49] showed 
that B-domainless human pFVIII (phBFVIII) is specifically stored 
in alpha-granules and released following platelet activation [50]. The 
maximal platelet antigen level achieved was equivalent to an ~10% 
antigenic plasma correction. The gold standard for correction of the 
murine FVIIInull mice was overnight survival after a tail vein snipping 
as FVIIInull mice uniformly die by morning [51]. Our pFVIII transgenic 
lines/FVIIInull mice survived this injury, however, we observed that 
pFVIII transgenic lines/FVIIInull mice with no detectable pFVIII levels 
also survived. We concluded that this assay is too sensitive, and that 
this model is actually an exsanguination model, wherein hypovolemic 
mice shunt blood away from their tails, leading to blood/platelet stasis 
and an exaggerated efficacy of miniscule amounts of pFVIII [52]. We, 
therefore pursued other models for testing hemostasis. In a cuticular 
bleed model, where we avoided exsanguination by limiting the test to 
6 hrs, hemostatic improvement in the various pFVIII transgenic lines/
FVIIInull mice was directly related to measureable pFVIII levels [45]. 

Using an in situ cremaster laser injury system where we could study 
the details of platelet and fibrin accumulation in both arterioles and 
venules, we showed that phBFVIII improved clotting in both beds 
[52]. However, these studies also showed that the temporospatial 
availability of phBFVIII differed from infused hBFVIII, resulting in full 
normalization of the time to onset of fibrin clot formation, but with 
limited total fibrin/platelet accumulation, likely due to a documented 
increased embolization compared to infused hBFVIII. Whether this 
embolization is due to the actual distribution of phBFVIII within the 
forming thrombus or because of too low levels of expression remains 
an unanswered question and further studies to increase the available 
FVIII using strategies to increase expression may help to define the 
underlying reason for this phenomenon. The biologic relevance of the 
embolization (in terms of risk of thromboembolic phenomenon) is not 
clear.

We found that the level of pFVIII in mice that were vWF-/- was 
75% of that seen in vWF+/- or vWF+/+ [14]. We hypothesize that this 
decrease is due to FVIII stability in the absence or presence of carrier 
vWF in the alpha-granule affecting survival over the platelet circulating 
life. We also showed that the pFVIII in vWF-/- mice was biologically 
available and active in vivo using a FeCl3 carotid artery injury model 
[14]. We have shown that this clotting model has a clear dose-response 
in FVIIInull mice infused with hBFVIII [50]. Whether platelet alpha-
granule vWF affects pFVIII targeting, stability and efficacy will be of 
importance in canine studies because these animals lack or are deficient 
in pvWF [54,55]. 

Two other groups have published murine studies expressing 
pFVIII, but used both transgenic and lentiviral approaches [56,57]. 
Neither group achieved as high pFVIII levels as in our studies, perhaps 
due to their selected promoter constructs, and both groups relied on 
the tail exsanguination model to demonstrate efficacy. Of significance, 
Shi, et al., first demonstrated that pFVIII remains effective in the 
presence of circulating inhibitors [56,58]. They reported that pFVIII 
was >106-fold more effective than infused hBFVIII. We studied this 
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issue concurrently using the FeCl3 carotid artery injury model [59] 
and confirmed improved efficacy of pFVIII in this setting, but showed 
a benefit of ~102-fold compared to infused hBFVIII, and this large 
degree of difference in efficacy likely reflects on the different hemostasis 
models used and the efficacy of pFVIII in each model. 

Our studies [59] also showed that the presence of anti-FVIII 
antibodies did not result in an immune-based thrombocytopenia in 
pFVIII-expressing mice, further supporting the concept that pFVIII in 
alpha-granules may be sheltered from inhibitory antibodies. Circulating 
platelets take up immunoglobulins and store them within alpha-
granules [60]. We showed that this was true for infused circulating 
inhibitors in FVIIInull mice [59]. Recently, the physical distribution of 
platelet alpha-granule content has been shown to consist of multiple 
distinct subpools [61,62] or that the alpha-granules are elongated and 
have different physical distribution of their protein content within 
each tubular granule [63]. Moreover, subpools of platelet granules may 
degranulate differently to various agonists [64]. We interpret the finding 
that pFVIII is efficacious in the presence of circulating inhibitors to 
mean that either the inhibitors are stored physically removed from the 
pFVIII and perhaps differentially released, allowing FVIII activity to be 
preserved by the pFVIII or that pFVIII bound to vWF is protected from 
the inhibitors [59] in the circulating platelets. 

So far, the maximal level of pFVIII achieved in mice has been ~10% 
of plasma level. Whether higher levels or specific activity can be more 
efficacious in FVIIInull mice was tested by us both transgenically and 
by lentiviral pFVIII delivery using a human variant termed IR8 that is 
resistant to thrombin inactivation [64], but that also binds poorly to 
vWF; and canine (c) BFVIII, that both has higher specific activity than 
hBFVIII and is expressed better than hBFVIII in many cell lines [65]. 
Both variants were more effective than hBFVIII in the cuticular bleeding 
and FeCl3 carotid artery models [66]. However, in the cremaster injury 
model, only pcBFVIII was more effective, markedly increasing clot 
stability. Because inhibitors of FVIII are stored in platelet granules and 
IR8 is not protected by binding to vWF, we also tested whether pIR8 
was effective in the face of inhibitors and found that pIR8 is protected 
from the inhibitors. Thus the concern that in the dog hemophilia model 
that the lack of pvWF may limit the ability to study pFVIII biology in 
the presence of inhibitors is decreased.

Of note, pcBFVIII levels were a third of that seen with hBFVIII 
expression both in the transgenic mice and in mice whose marrow was 
reconstituted with lentiviral delivery [66] using cDNAs that in baby 
hamster kidney (BHK) cells resulted in cells expressing three-fold 
more cBFVIII than hBFVIII [65]. Given the known limitations of FVIII 
intracellular processing, resulting in cellular apoptosis [9], we propose 
that the limitation in level of FVIII that several groups have been able 
to achieve in developing megakaryocytes, and the decidedly lower 
levels of cBFVIII that can be achieved in megakaryocytes is the result 
of intracellular processing of FVIII in megakaryocytes which may be 
rate-limiting and that the pFVIII is causing apoptosis. If this hypothesis 
is supported it would imply that attempts to enhance pFVIII levels in a 
megakaryocyte may be limited and that pFVIII megakaryocytes are at a 
disadvantage at marrow reconstitution relative to wildtype cells. Studies 
to further define the potential role of apoptosis in expression levels are 
underway. It is not clear whether the chimeric porcine/human FVIII 
which has been used in some transplantation models [41,42] would be 
better secreted than even the cBFVIII, but studies showing therapeutic 
plasma FVIII levels in mice are encouraging.

Incipient canine studies

Given the potential advantages of pFVIII in the presence of 

circulating inhibitors, it is clear that pFVIII may have clinical utility. 
At the same time, pFVIII has a different distribution both spatially and 
temporally from plasma FVIII [53], and may be present at low levels 
in platelet-poor thrombi and especially high in platelet-rich thrombi. 
Additionally, its interactions with vWF and inhibitors may be quite 
different from plasma FVIII. It is therefore clear that more studies 
would be needed before pFVIII can come to clinical fruition as an 
alternative to other approaches that enhance plasma FVIII levels.

One additional set of concerns comes from the initial report of 
canine studies [67]. Given the fact that hemophilia A dogs are being 
treated to enhance pFVIII levels, myelosuppression for bone marrow 
transplant, leading to thrombocytopenia may be life-threatening. 
Animals may have a greater bleeding diathesis too if final platelet 
counts are lower than pre-treatment levels. Milder marrow suppression 
may limit the percent of platelets expressing pFVIII and this too may 
further limit efficacy. As mentioned above, the maximal level of pFVIII 
achievable in a megakaryocyte may be limited so that the only option 
to increase efficacy is to develop pFVIII of higher specific-activity than 
hBFVIII, like the cBFVIII discussed above, but which at the same time 
has as good or better than hBFVIII intracellular processing.

Summary

Platelets offer an opportunity to target therapy to a site of vascular injury. 
Clearly, ectopically expressed FVIII is stored in alpha-granules and released at a 
site of injury and is effective to some extent in FVIIInull mice. Moreover, this FVIII 
appears to be resistant to some degree to the presence of circulating inhibitors, and 
this feature of pFVIII is its most appealing clinical value. On the other hand, pFVIII 
is not equivalent to plasma FVIII. In some settings it may be less effective and in 
others more, perhaps associated with thromboembolic complications. The impact 
of pFVIII on developing megakaryocytes needs to be addressed as pFVIII may limit 
megakaryocyte maturation and increase apoptosis. Finally a strategy to optimize 
pFVIII levels and specific activity while avoiding prolonged thrombocytopenia in 
hemophilia A individuals will be challenging and require additional intermediate 
animal models compared to therapies that enhance plasma levels.
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