
Volume 2 • Issue 1 • 1000109J Tumor Res, an open access journal
ISSN: JTR 

Research Article Open Access

Rihan et al., J Tumor Res 2016, 2:1

Research Article Open Access

Journal of Tumor ResearchJo
ur

na
l of Tumor Research

Dynamics of Tumor-Immune System with Fractional-Order
Fathalla A Rihan1*, Adel Hashish2, Fatma Al-Maskari3, Mohamud Sheek-Hussein3, Elsayed Ahmed4, Muhammad B Riaz5 and Radoune Yafia6

1Department of Mathematical Sciences, College of Science, UAE University, 15551, Al-Ain, UAE
2Department of Physics, College of Science, UAE University, 15551, Al-Ain, UAE
3Zayed bin Sultan Al Nahyan Center for Health Sciences, College of Medicine and Health Sciences, UAE University, Al-Ain, UAE
4Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
5Department of Mathematics, University of Management and Technology, Lahore, Pakistan
6Ibnou Zohr University, 638, Ouarzazate, Morocco

*Corresponding author: Rihan FA, Department of Mathematical Sciences, 
College of Science, UAE University, 15551, Al-Ain, UAE, Tel: +971-3-7673333; 
E-mail: frihan@uaeu.ac.ae

Received April 26, 2016; Accepted May 24, 2016; Published August 26, 2016

Citation: Rihan FA, Hashish A, Al-Maskari F, Hussein MS, Ahmed E, et al. (2016) 
Dynamics of Tumor-Immune System with Fractional-Order. J Tumor Res 2: 109.

Copyright: © 2016 Rihan FA, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
Most of biological systems have long-range temporal memory. Modeling of such systems by fractional-order 

(or arbitrary-order) models provides the systems with long-time memory and gains them extra degrees of freedom. 
Herein, we suggest a simple fractional-order model to describe the dynamics of tumor-immune interactions. Two 
effector cells are considered, in the model, with a Holling function response of type-III. The model is extended to 
include treatment terms which represent an external source of the effectors cells by ACI and an external input of IL-
2. Asymptotic stabilities of tumour-free steady state and persistent- tumour steady state are studied. The threshold 
parameter R0 (average number of newly infected cells produced by a single councerous cell) is deduced. The 
numerical simulations show that the fractional-order derivative enriches the dynamics of the system and increases 
the complexity of the observed behaviours, which confirms that the fractional-order may play the role of memory in 
the system.

Keywords: Cancer; Fractional-order; Numerical simulation; 
Stability; Steady states; Tumor-immune system

Introduction
Tumors are a family of high-mortality diseases, exhibiting a 

derangement of cellular proliferation which often lead to uncontrolled 
cell growth [1,2]. Research efforts are being devoted to understand 
the interaction between the tumour cells and the immune system 
[3-6]. Mathematical models, using ordinary differential equations 
with integer-order, have been proven valuable in understanding the 
dynamics of tumour-immune system and how host immune cells and 
cancerous cells evolve and interact; See e.g. [7-12]. However, modeling 
of biological systems by fractional-order differential equations has 
more advantages than classical integer-order mathematical modeling, 
in which such affects the memory are neglected. Accordingly, the 
subject of fractional calculus (that is, calculus of integral and derivatives 
of arbitrary order) has gained popularity and importance, mainly due 
to its demonstrated applications in system biology [13,14] and other 
fields of sciences [15-18]. The Fractional-Order Differential Equations 
(FODEs) models are more consistent with the biological phenomena 
than those of integer-orders. This is due to the fact that fractional-
order derivatives the description of the memory and hereditary 
properties inherent in the processes [19]. It has been deduced in [13] 
that the membranes of the organism have fractional-order electrical 
conductance, which are classified under the non-integer order models.

Fractional Models of Tumor-Immune System
Immune system is considered as one of the most fascinating 

schemes in terms of biology and mathematics. Immune system is 
multi-functional with several metabolic pathways; therefore most 
effector cells perform more than one function. Plus, each function of 
the immune system is typically done by more than one effector, which 
makes it more complex [20]. Differential equations, with integer-
orders, have long been used in modeling cancer phenomena [21-
23], but fractional- order differential equations have short history in 
modeling such systems with memory [24]. Herein, we use FODEs in 
modeling tumor-immune interactions, which are naturally related to 
systems with memory. 

Assume that model of cancer-immune system includes two 
immune effectors: E1(t) and E2(t) (such as cytotoxic T-cells, and 
natural killer cells), interacting with the cancer cells, T(t) with tumour’s 
functional response of Holling Type-III [25]. The model takes the form
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The parameter d1 represents natural decay rate of the effect cells 
E1(t). k1 and k2 are half saturation parameters, a is the growth rate of 
tumour cells. r1 and r2 are the reduction rate of tumour cells due to 
presence of the effector cells E1(t) and E2(t) respectively. d2 represents 
natural decay rate of the effect cells E2(t). All of these parameters are 
supposed to be positive constants. The interaction terms in the first and 
third equations of model (1) satisfy the cross reactivity property of the 
immune system. It has been assumed that (d1k1/(1−d1))<<(d2k2/(1− 
d2)), to avoid the non-biological interior solution where both immune 
effectors coexist. For more details about model (1), we refer to [16].

Here, we have modified model (1) to include external sources of 
effector cells and immune stimulation effects by treatment Interleukin-2 
(IL-2). Assume that three populations of the activated immune-system 
cells, E(t); the tumor cells, T(t); and the concentration of IL-2 in the 
single tumor-site compartment, IL(t) (Figure 1). To ease the analysis, 
consider a classic bilinear model that includes Holling Type-I function 
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and external effector cells s1 and input of IL-2, s2. The interactions 
of the three populations are then governed by the fractional-order 
differential model:
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with initial conditions: 
00 0 L LE(0) = E , T(0) = T , I (0) = I . The first 

equation describes the rate of change in the effector cells population. 
The parameter p1 represents the antigenicity rate of the tumor (immune 
response to the appearance of the tumor), p3 is the cooperation rate 
of effector cells with Interleukin-2 parameter, and s1 represents the 
external source of the effector cells, with rate of death p2. The second 
equation shows the rate of change of the tumour cells which follows a 
logistic growth (a type of limiting growth) in the absence of immune 
response. The parameter p4 incorporates growth rate of tumor cells. 
The maximal carrying capacity of the biological environment for tumor 
cell is 1

5p− . Whereas, p6 is the rate of tumor cells. The third equation 
gives the rate of change for the concentration of IL-2. Its source is the 
effector cells, which are stimulated by interaction with the tumour. The 
parameter p7 is the competition rate between the effector cells and the 
tumor cells. The external input of IL-2 into the system is s2 and the 
loss-rate parameter of IL-2 cells is p8.

In the absence of immunotherapy with IL-2, we have
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To minimize sensitivity (or robustness) of the model, we non-

dimensionalize the bilinear system (3) by taking the following re-
scaling:
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After the above substitution into (3), we have
1
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(Here t is replaced by t*.) The analytical stability region of fractional-
order system (4) is given in Figure 2.

We then study the stability of the steady states of models (1) and (4).

Equilibria and local stability of model (1)

The equilibrium points of system (1) are:

0 1 1 1 1 1

2 2 2 2 2

(0,0,0); a / r , d k /(1 - d ), 0);

(0, d k /(1 - d ),a / r ).

ε = ε =

ε =
 		                  (5)

Here ε0 is the naive first equilibrium, 1ε  is the memory equilibrium 
and the 2ε  is endemic according to the value of the tumor size. Stability 
analysis shows that the naive state is unstable.

However, the memory state is locally asymptotically stable if 

1
0 1

2

dR  = < 1, and 0<d <1
d

While the endemic state is locally asymptotically stable if 0R  > 1
and 20 < d  < 1.  There is bifurcation at R0=1. The stability of the 
memory state depends on the value of one parameter namely the 
immune effector death rate.

Equilibria and local stability of model (4)

The steady states of the reduced model (4) are again the 

intersection of the null-clines 1D x = 0a 2D y = 0.a  If y=0, the tumor-

free equilibrium is at 0 = (x, y) ( ,0)σ
ε =

θ
. This steady state always exist, 

since 0σ
>

θ
. From the analysis, it is easy to prove that the tumor-
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θ
of the model (4) is asymptotically stable 
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Figure 1: Key-players in tumour-immune interactions described in model (2).
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Proposition 1: Assume that the endemic equilibrium 1ε  exists and 
has nonnegative coordinates.

If 0
aR 1θ

= <
σ

then 1 1tr(J( )) 0andε > ε  is unstable.

Proof Since
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Therefore, when aθ < σ , we have 2 2b(a ) a b 0ω −ω + θ − θ >  and hence both sides of the inequality are positive. Therefore if the 
equilibrium point 1ε exists and has nonnegative coordinates, then 

1tr(J( )) 0ε >  and the point ( 1ε ) is unstable whenever 0R a / 1= θ σ < .

Similarly, we arrive at the following Proportion.

Proposition 2: If the point 2ε  exists and has nonnegative 
coordinates, then it is asymptotically stable.

Proposition 3: The presence of a fractional differential order in a 
differential equation can lead to a notable increase in the complexity of 
the observed behaviour, and the solution is continuously depends on 
all the previous states (Figure 1).

Results and Discussion
The numerical technique discussed in [16] was used to numerically 

simulate the qualitative behaviours of the fractional-order models. The 
numerical technique is based on Caputo sense for fractional derivative 
(Appendix A) and implicit Euler’s approximation, for the resulting 
systems, with step-size h=0.05 and 0.5<α ≤ 1 and parameters values 
given in the captions of the figures.

Figure 2 provides indication that the fractional differential order 
enlarges the stability region of the solution when 0<α ≤ 1. Figure 3 
displays the numerical simulation of (1). The left banner shows the 
memory equilibrium point 1ε ; While right banner shows an endemic 
equilibrium 2ε  with sustained oscillations. Figures 4 and 5 confirm 
that the fractional derivative damps the oscillation behaviour for 
model (1).

In this paper, we presented two fractional-order models for tumor-
immune interactions. In the first model, we provide a Holling type-
III function and cross reactivity in fractional-order model for tumor-
immune interactions. Two immune effectors have been considered 
because of the property of multi-functional and multi-pathways of 
the immune system. We obtained memory states, using the fractional-
order, whose stability depends on the value of one parameter namely the 
immune effector death rate. However, in the second model, we extend 
the model to include external treatments then reduce the system into 
a prey-predator model. The models possess non-negative solutions, 
as desired in any population dynamics. We deduced the threshold 
parameters R0 and 0R , respectively for each model. These parameters 
represent the minimum tumor-clearance parameter or minimum 
infection free. It has been seen from the numerical simulations that 
the fractional-order enriches the dynamics of the system and enlarges 
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Figure 2: Stability region of the fractional-order system (4) is enlarged when 
0<α ≤ 1, where λ is the root of the characteristic equation.
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Figure 3: Shows the numerical simulations of model (1) when α=1.0 and a=r1=r2=1; d1=0.3, d2=0.7, k1=0.3, k2=0.7 (left banners) where the system converges to steady 
state ε1; and when d1=0.7, d2=0.3 (right banner), where the system converges to steady state ε2. We note sustained oscillations.
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description of memory and hereditary properties of inter and intra 
cells. It is possible that the tumour may result in either equilibrium 
with (dormancy) or escape from the immune system. The fractional-
order differential equations are, at least, stable as their integer-order 
counterparts. The presence of a fractional differential order in the 
differential equation can lead to a notable increase in the complexity 
of the observed behaviour, as the solution continuously depends on 
all the previous states of the solutions. The analysis can be extended to 
include more components of immune response and control variables. 
It can also be extended to describe the dynamics of hepatitis B and C 
virus infections.

Appendix A: Preliminaries
The subject of fractional calculus deals with the investigations 

of derivatives and integrals of any arbitrary real or complex order, 
which unify and extend the notions of integer-order derivative and 
n-fold integral. Here, we provide some definitions of fractional-order 
integration and fractional-order differentiation [26]. There are several 
approaches to the generalization of the notion of differentiation to 

the stability regions of the solutions. Although the fractional-order 
model (4) is simple, it displays up to three steady states. Figure 6 

shows different types of steady states: Tumour-free steady state 0ε , 
dormancy-, medium and high persistent-tumour steady states (right) 

1,2ε , for the model (4).

As a result, in the endemic steady states, Figure 7 shows that the 
fractional-order derivative kills the oscillation behaviour. Figure 8 
displays the numerical simulations for the model (4) with different 
values of the fractional order and parameter values given in the caption. 
The tumour-free 0ε is locally asymptotically stable as 0R a / 1= θ σ <  
.From the graphs, it can be seen that FODEs have rich dynamics and 
are better descriptors of biological systems than traditional integer-
order models. The equilibria for infection-free and endemic fractional-
order cases are the same as integer-order counterparts.

Conclusion
In this paper, the authors conclude that the fractional-order 

derivatives in the models provide an excellent instrument for the 
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Figure 4: Shows the numerical simulations of model (1) when α=0.95 and a=r1=r2=1; d1=0.3, d2=0.7, k1=0.3, k2=0.7 (left banners) where the system converges to 
steady state 1ε ; and when d1=0.7, d2=0.3 (right banner), where the system converges to steady state 2ε . The fractional derivative damps the oscillation behaviour.
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Figure 5: Shows the numerical simulations of model (1) when α=0.75 and a=r1=r2=1; d1=0.3, d2=0.7, k1=0.3, k2=0.7 (left banners) where the system converges to 
steady state 1ε ; and when d1=0.7, d2=0.3 (right banner), where the system converges to steady state 2ε . The fractional derivative damps the oscillation behaviour.
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Figure 6: Shows (left) tumour-free steady state 0ε and low-, medium and high persistent-tumour steady states (right) 
1,2ε ,for the model (4). The stable steady states 

are [•], unstable steady states are [◦], stable manifold is [−−−] and initial conditions are [+], with external treatment doses σ>0 and particular parameters.
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fractional-orders e.g. Riemann-Liouville, Caputo and Generalized 
Functions approach. Let L1=L1[a, b] be the class of Lebesgue integrable 
functions on [a, b], a < b < ∞ .

Definition 1 The fractional-integral (or the RiemannLiouville 
integral) of order β ∈ R+ of the function f(t), t>0 (f : R+ → R) is defined by

t 1
a a

1I f (t) (t s) f (s)ds, t 0
T( )

β β−= − >
β ∫  		                 (7)

The fractional derivative of order (n 1,n)aε − of f(t) is defined by 
two nonequivalent approaches.

(i) Riemann-Liouville fractional derivative in which we take 
fractional integral of order (n )−a and then take nth derivative,

n
n n n

* * a n

dD f (t) D I f (t), D , n 1,2,...
dt

a −a
a= = =   	               (8)

(ii) Caputo fractional derivative in which we take nth derivative 
and then take a fractional integral of order (n )−a

n n
a *D f (t) I D f (t), n 1,2...a −a= =  			                   (9)

From the definition, we notice that the time-fractional derivative 
of a function f(t) at t=tn involves an integration and calculating time-
fractional derivative that requires all the past history, i.e. all the values 
of f(t) from t=0 to t=tn. In this paper, we have adopted Caputo’s 
definition which has the advantage of dealing properly with initial 
value problems. The following Remark addresses some of the main 
properties of the fractional derivatives and integrals [12,17].

Remark 1 

Let , and (0,1). Then+β γ∈ a∈

1 1 1
a a a a(i) If I :L L andf (t) L , then I I f (t) I f (t);β β γ β+γ→ ∈ =

n
a an

t
1
a

0

(ii) limI f (x) I f (t)uniformly on [a, b], 

n = 1, 2, 3, . . . , where I f (t) f (s)ds;

β

β→
=

= ∫

*1

(iii) If f(t) is absolutely continuous on 
df (t)[a, b], then limD f (t) ;

dt
a

a→
=

1
* *

1
*

d(iv) ThusD f (t) I f (t)(Riemann-Liouville sense) 
dt

dand D f (t) I f (t)(Caputosense).
dt

a −a

a −a

=

=

*

(v) Supposef (t) C[a, b] and
D f (t) C(a, b] for 0 < 1, then we havea

ε

ε a ≤

*
1f(t) = f(a) D f ( )(t a) , with a <  < t t (a, b).

T( )
a a+ ξ − ξ ∀ ∈

a
 (10)

If (v) holds, and Da
* f(t) 0 t ∈ [a, b], then f(t) is nondecreasing for 

each t ∈ [a, b]. If Da
* f(t) 0 t [a, b], then f(t) is non-increasing for each 

t ∈ [a,b].
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