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Abstract
Nitrite (NO2

-) contained in dietary foods has long been recognized for its toxicity as the causative agent of 
methemoglobinemia and also as a source of mutagenic nitrosamines. Because of these potential toxicities, nitrite as 
well as nitrate contained in foods and drinks are strictly limited by regulations in many countries. Recent studies have 
offered us to update our recognition of nitrite; nitrite is an important precursor for Nitric Oxide (NO) that is required 
for fundamental physiological activities including vasorelaxation. Although it is well established that green vegetables 
contain high amounts of nitrate, there has been controversy regarding the source of nitrite accumulation in fresh 
green vegetables. In this study, we investigated the dynamics of nitrite and nitrate contents in spinach leaf extracts to 
verify the mechanisms of nitrite formation. The time course of nitrite production in leaf extracts showed a reciprocal 
relationship with nitrate degradation, suggesting a conversion from nitrate to nitrite. The reaction strongly depended 
on temperature and it was suppressed at a low temperature. Sodium tungstate, a nitrate reductase enzyme inhibitor, 
was effective to suppress the conversion. Pre-sterilization by autoclaving or filter sterilization completely prevented 
the formation of nitrite as well as degradation of nitrate. We suggest that previous reports of nitrite accumulation can 
be attributed to microbial nitrate reductase activities that occur during the degradation spinach leaves.

Keywords: Bacteria; Dietary food; Nitrite; Nitric oxide; Metabolic
syndrome; Vegetable; Sodium tungstate

Abbreviations: AMO: Ammonia Monooxygenase; HAO:
Hydroxylamine Oxidoreductase; NiR: Nitrite Reductase; NO: Nitric 
Oxide; NOS: Nitric Oxide Synthase; NR: Nitrate Reductase; ROS: 
Reactive Oxygen Species; RNS: Reactive Nitrogen Species

Introduction
A vegetable-based diet has been widely recognized effective 

in prevention of chronic diseases including metabolic syndrome. 
Nutritionally, dietary vegetable is an important source of vitamins, 
minerals and fibers [1]. Green leafy vegetables, in particular, are 
beneficial due to a high content of ascorbate (vitamin C), and colored 
vegetables include carotenoids (vitamin A precursor) and polyphenols 
(vitamin P), all of which act as strong antioxidants that detoxify Reactive 
Oxygen Species (ROS) formed under stress or disease conditions 
[2,3]. In addition to these aspects, recent progress in life science has 
made a new paradigm shift which impacts even on food sciences, i.e., 
physiology and biochemistry of Nitric Oxide (NO).

NO is a free radical gaseous molecule that was previously only 
recognized for its potential toxicity as an air pollutant [4]. After 
the discovery of a physiological function of NO in vasorelaxation 
mechanism, it has been revealed that NO exhibits a range of 
fundamental roles in mammalian physiology: regulating blood 
pressure [5], neurotransmission [6], regulation of immune responses 
through activation of macrophages [7] and penile erection [8]. Just 
as superoxide (O2

-) is a primary source of ROS, NO and its reaction 
products are designated as Reactive Nitrogen Species (RNS) [9]. 
Thus, increase of NO availability through foodstuffs has attracted 
much attention from medical researchers in terms of chronic disease 
prevention [10].

In general, NO is produced in mammals through the enzymatic 
activity of Nitric Oxide Synthase (NOS) with the amino acid L-arginine 
as a substrate [5]. Since the NOS reaction requires O2 to produce NO, 
it does not work in anoxia or anaerobic conditions where ischemia 
occurs [11,12]. Nitrite-dependent NO production mechanism does 

work even under such conditions [11,12], and is thereby considered to be an 
alternative backup mechanism for NO production in our body [11,12]. In the 
oral cavity, nitrite (NO2

-) is produced from nitrate (NO3
-) through symbiotic 

bacterial activities [13]. Of the nitrate absorbed from the intestine 
approximately one-quarter is returned to the upper gastrointestinal 
tract via the saliva, presumably to permit reduction of nitrate to nitrite 
by mouth bacterial flora [13-15]. 

In food science, nitrite contained in human diet has long 
been recognized for its toxicity as the causative agent of 
methemoglobinemia [12]. Due to the formation of mutagenic 
nitrosamines [16], it has also been presumed that nitrite is 
potentially carcinogenic [17]. Because of these two historical 
backgrounds, nitrite as well as nitrate contained in foods and drinks 
has been strictly limited by regulations in many countries [18-20]. 
However, extensive animal and epidemiological studies have not 
indicated that nitrite in foods leads to carcinogenesis [13].

Nitrite ingested undergoes non-enzymatic acid-mediated reduction 
to NO in the stomach while the rest is absorbed into the bloodstream 
[13]. Figure 1 shows a schematic illustration for dietary source of NO. 
In general, natural foods such as leafy vegetables or seaweeds possess 
little nitrite but high levels of nitrate [13,21] a possible health benefit 
of the Japanese [22] and Mediterranean diets [23-25]. Direct supply 
of nitrite from diets may come from processed foods or curing meats. 
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Therefore, bioavailable nitrite is mostly supplied exogenously as nitrate 
contained in foods and drinks (Figure 1).

Vegetables are major dietary sources of nitrate in general. More 
than 80% of the nitrate ingested can be attributed to vegetables [26]. 
Nitrate is an essential nutrient for plant growth [27] and its content 
varies widely between plant species [28,29] and even within the same 
tissue types of the same species, presumably due to differences in nitrate 
fertilization during cultivation [30]. Even in plant physiology, the 
conditions where leaves accumulate nitrite in the tissue are yet unclear 
[31]. Many physiological studies have suggested that plants produce 
nitrite only under stress conditions [32,33]. However, its production 
mechanism is still under debate [34].

There have been many reports on the nitrate and nitrite contents 
in retail green vegetables [28,35]. In respect to nitrite content, there 
are inconsistent and controversial results; some reports indicate the 
presence of nitrite [28,35-37] but others do not [38,39]. Hsu et al. 
suggested that nitrite detected in fresh vegetables may be due to bacterial 
activities [29]. To date, however, there has been no experimental 
evidence for the bacterial association with the nitrite formation. Here 
we demonstrate that the nitrite formation can be attributed to bacterial 
nitrate reductase activity which converts nitrate to nitrite in the process 
of spinach leaf decay.

Materials and Methods
Sample preparation

Spinach (Spinacia oleracea L.) was used as a representative green 
leaf vegetable due to a high amount of nitrate [40]. Fresh spinach leaves 
were obtained from local markets. After removing midrib, spinach 
leaves washed with tap water (300 g of fresh weight) were homogenized 
with distilled water (600 ml) at 0˚C for 30 s. The obtained homogenate 
was filtered through four-layers of gauze. The filtrate was centrifuged at 
5,000 × g for 12 min and the supernatant obtained was used as the leaf 
extract for experiments. 

The leaf extract (10 ml) was incubated in a gamma-sterilized Falcon 
tube at a constant temperature in darkness. During incubation, the 
tubes were continuously shaken at 120 rpm. Samples collected were 
frozen at –80˚C until analyzed. 

The frozen samples were thawed and denatured at 100˚C for 3 
min to inactivate endogenous enzymatic activities. The heat-denatured 
samples were centrifuged at 15,000 × g for 10 min (4˚C) and the 
supernatant filtered with a syringe filter (0.45 µm mixed cellulose ester 

syringe filter, 25AS045AN, Advantec) to obtain a soluble fraction. We 
further passed the sample through a SPE removing chloride filter (IC-
Ag, Altech) to remove Cl- whose retention time was close to nitrite. A 
0.2 μm PTFE syringe filter (13HP020CN, Advantec) was used before 
injection into the ion chromatography apparatus.

Ion chromatography

To quantify the nitrate and nitrite contents, we used HPLC ion 
chromatography with an anion column (Shim-pack IC-A3, Shimadzu) 
along with an electrical conductivity detector (CDD-10AVP, Shimadzu). 
Experimental conditions were basically similar to the method reported 
by Ogata and coworkers [41]. A mobile phase liquid contained 3.2 
mM Bis-tris, 8.0 mM 4-hydroxybenzoic acid and 50 mM boric acid 
(pH 4.5). The flow rate was 0.7 ml/min and the column temperature 
was kept at 40˚C. Calibration was carried out with an anion mixture 
standard solution (Wako, Saitama). 

Time course experiments to monitor nitrite and nitrate 
contents

For the time-course experiments of changes in nitrate and nitrite 
contents, 200 ml of leaf extract in a 500 ml conical flask was used. 
Conical flasks were plugged with sponge silicone plugs which allow gas 
flow but prevent microbe penetration. The leaf extracts were incubated 
in darkness at 35, 25 and 15˚C for 48 h. During the incubation, conical 
flasks were rotated at a constant speed (60 rpm) for mixing and 
aeration. Aliquots (1 ml) of the leaf extract were taken and they were 
frozen at –20˚C until analyzed.

Experiments of inhibitors and sterilization

To verify microbial activities we sterilized the leaf extract with 
two distinct methods: autoclave sterilization and filter sterilization. 
Autoclaving was carried out at 120˚C for 5 min before the incubation. 
To sterilize without heat treatment, we used a filter sterilization 
method with a 0.22 μm PES filter cartridge (8020-500, IWAKI) before 
the incubation. In inhibitor experiments, allylthiourea, nitrapyrin and 
tungstate (1 mM for each) were added before incubation, and the leaf 
extracts (10 ml) were rotated at 120 rpm at 25˚C in darkness for 42 h. 
Aliquots of leaf extract (1 ml) were sampled and kept at –80˚C until 
analyzed.

Chemicals

Allylthiourea (1-allyl-2-thiourea) and nitrapyrin (2-chloro-6-

Figure 1: Exogenous sources of nitrite production in body. Dietary intakes of nitrate included in vegetables, meats and drinks lead to conversion of nitrate to nitrite by 
nitrate reductase of oral bacteria. Nitrite reaching the stomach through the digestive tract can be spontaneously converted to nitric oxide (NO) in the acidic conditions of 
the stomach. NO acts as an important factor in physiological functions, for example vasorelaxation, neurotransmission and activation of macrophages. dNR indicates 
dissimilatory nitrate reductase.
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[trichloromethyl] pyridine) were obtained from Tokyo chemical. 
Tungstate (sodium tungstate dehydrate) was obtained from Nacalai 
tesque. Bis-tris was obtained from Dojindo. 4-Hydroxylbenzoic acid 
was obtained from Kishida chemical. Allylthiourea and tungstate were 
dissolved in distilled water (100 mM) and nitrapyrin was dissolved in 
DMSO (100 mM). 

Results
Nitrate content in spinach leaves

As many studies have reported so far, the nitrate content in retail 
spinach leaves varies to a large extent: from a minimum of 110 mg/

kg [37] and a maximum of 4,923 mg/kg [35]. We also found similar 
trend on the nitrate content in retail spinach leaves. In our analysis, the 
average nitrate content was 1,900 mg/kg ±194 (n=10; ±SD), with a 785 
mg/kg as minimum and maximum of 2,544 mg/kg. 

Although our results of nitrate content basically agreed with the 
previously reported values, we detected only negligible amounts of 
nitrite. As Phillips pointed out, some previously reported results might 
be accounted for by bacterial nitrite formation due to decay of vegetables 
[42]. We indeed found that nitrite was detected in one week artificially 
decayed spinach leaves (data not shown). Since experimental control of 
the decay of the leaves with good reproducibility was difficult and it was 
virtually impossible to apply chemicals to investigate the phenomenon, 
we decided to use a model system for analysis. In this study a crude leaf 
extract that includes a soluble fraction as well as small organelles and 
surface bacteria was used for analysis.

Time course of dynamics of nitrate and nitrite at different 
temperature

We first monitored the changes in nitrite and nitrate contents in 
spinach leaf extracts for 48 h, incubating at different temperatures. 
To quantify nitrate and nitrite, we applied an ion chromatography 
technique. Figure 2 shows a typical HPLC ion chromatogram. Nitrate 
(peak 1) and nitrite (peak 2) were successfully detected as distinct 
peaks (Figure 2). Nitrate and nitrite contents were determined with 
each peak area. Figure 3 illustrates changes in nitrate and nitrite 
contents incubated at 35˚C, 25˚C, and 15˚C. At all the temperatures 
tested, nitrate degradation followed by nitrite formation was observed 
during the incubation (Figure 3). The changes strongly depended on an 
incubation temperature; both changes (nitrate degradation and nitrite 
formation) went slower at a lower temperature. At 15˚C, no change 
was observed until 24 h. The maximum nitrite content was observed 
among the all incubation temperatures tested: 12 h (35˚C), 16 h (25˚C) 
and 40 h (15˚C). The maximum values of the formed nitrite at the peaks 
were 357 mg/kg, 350 mg/kg, and 307 mg/kg at 35˚C, 25˚C, and 15˚C, 
respectively. After reaching to the maximum, nitrite content decreased 
and eventually reached a negligible amount at all temperatures. It 
should be noted that an odd smell came from such leaf extracts.

Effects of inhibitors of bacterial nitrification and 
denitrification 

To verify the involvement of biological activity in nitrite formation 
in the leaf extract, we investigated effects of inhibitors on nitrite 
formation. Inhibitors of nitrification (allylthiourea and nitrapyrin) and 
denitrification (tungstate) were tested. 

Figure 4 shows suppressive effects of various treatments on 
nitrite formation in spinach leaf extract. As a negative control, we 
analyzed sterilized leaf-extract samples: autoclaved or filter sterilized. 
In both sterilization methods (with or without heat treatment), no 
nitrite formation was observed, indicating that the nitrite formation 
is attributable to microbial activities. Allylthiourea and nitrapyrin are 
known to inhibit the bacterial Ammonia Monooxygenase (AMO) 
which is a key enzyme for nitrification [43]. Allylthiourea showed no 
effect while nitrapyrin exhibited some (20% suppression). Tungstate is 
an inhibitor for nitrate reductase which is involved in denitrification. 
Interestingly, tungstate effectively prevented nitrite formation even in 
non-sterilized leaf extract sample (Figure 4).

The same trend was observed in the degradation of nitrate in the 
leaf-extract (Figure 5). As observed in nitrite formation, sterilization 
by autoclave and filter prevented the degradation of nitrate contained 

Figure 2: Ion chromatogram of spinach leaf extract. A typical chromatogram 
is shown. Peak 1, NO2

-. Peak 2, NO3
-. Each peak area was quantified with the 

anion mixture standard solution. 

Figure 3: Dynamics of nitrate and nitrite. Closed circle, NO2
-. Open circle, NO3

-. 
Spinach leaf extracts were incubated at 35˚C, 25˚C and 15˚C in darkness. Each 
point represents the average with error bars (S.E., n=3). 
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in the leaf-extract (Figure 5). Tungstate effectively prevented the 
degradation of nitrate, whereas nitrapyrin and allylthiourea showed 
weaker effects. Overall, the effects of the treatments were identical 
between nitrite formation and nitrate degradation, suggesting that 
bacterial conversion of nitrate to nitrite occurred in the leaf extract as 
has been suggested.

Discussion
Fresh spinach leaves do not accumulate nitrite

Our results have provided experimental evidence to confirm that 
nitrite accumulation merely occurs in fresh intact vegetables; bacterial 
activity mediates nitrite formation through nitrate reducing activity 
in decayed leaves. This nitrite formation can be suppressed at a low 
temperature, implying that nitrite should not be accumulated as long as 
fresh intact spinach is properly stored in a refrigerator at a non-frozen 
temperature. Therefore, it can be concluded that previous reports of 
high nitrite content reflected bacterial activity due to physical damage 
or degradation of spinach leaves as discussed by Phillips [42]. 

Nitrite accumulation mechanism in spinach leaves

As mentioned in the introduction, plant leaves do not accumulate 

nitrite under favorable conditions; nitrite can be detected in leaves 
when plants are exposed to stress conditions. Nitrite exists as an 
intermediate metabolite in nitrate assimilation. Plants absorb nitrate 
mainly from soil to synthesize amino acids. Using solar light energy, 
absorbed nitrate from the soil is reduced to nitrite by Nitrate Reductase 
(NR) in the cytosol [4]. Nitrite translocated into the chloroplasts is 
converted to ammonium ion (NH4

+) by nitrite reductase (NiR) located 
in the chloroplasts [4] and then ammonium ion is assimilated into 
amino acids [4]. The process can be disturbed by biotic (infectious 
or herbivoric) as well as abiotic (environmental) stresses. It has been 
found that root of tomato (Lycopersicon esculentum cv. Rondello) 
forms nitrite under anoxic conditions [33]. In rice seedling (Oryza 
sativa L. cv. Akitakomachi) Suzuki et al. reported that exposure 
of the tissues (root and stem) to different temperatures resulted in 
accumulation of nitrite in the leaves after light/dark transition [32]. 
It should be emphasized that accumulated nitrite can be reduced to 
NO by NR and the gas will be released into the air [4,44]. At an early 
stage of this study, we hypothesized that retail spinach leaves stored 
at a refrigerator temperature under light for display might accumulate 
nitrite because ROS is overproduced under such condition [45]. We 
did detect a small and transient NO emission from leaves but nitrite 
content was negligible (data not shown). As long as we examined, 
there was no clear indication for the accumulation of nitrite in spinach 
leaves by stress treatment that is presumed to occur in a retail process. 
The only case we detected nitrite was following physical damage of the 
leaves, which facilitated bacterial degradation. 

It has been known that processed vegetable foods sometimes 
include high nitrite. Chetty and Prasad; and Phillips reported that baby 
foods made from vegetable included nitrite [42,46]. Moreover, some 
studies reported nitrite in canned and frozen vegetables [37,42,47]. It is 
highly likely that vegetables were already spoiled, and sterilization was 
not enough to prevent microbial growth in the processing vegetables. 
Fermentation in pickling vegetable can result in high accumulations 
of nitrite. Ji et al. reported that nitrite was formed and nitrate was 
degraded in pickled Chinese cabbage (Brassica campestris L.) during 
the fermentation [48]. Yan et al. found that nitrite in cabbage (Brassica 
oleracea var. capitata) increased during fermentation for Chinese 
paocai [49].

Another reason for inconsistency in nitrite content in vegetables 
may be attributed to artefactual factors due to the methods used. Many 
earlier studies used the Griess method (a colormetric method) for 
nitrite quantification of vegetables. The tissues of plants or vegetables 
contain abundant antioxidants or reductants such as ascorbate 
and polyphenols which may affect certain assays [3]. Additionally, 
photosynthetic pigments may act as photosensitizers to produce 
reactive oxidants such as ROS under light [4]. These technical factors 
might confound the quantification of nitrite.

Source of bacteria

In principle, nitrite is formed through two distinct dissimilation 
metabolisms, namely, nitrification and denitrification [31,50]. In 
nitrification, two enzymes, Ammonium Monooxygenase (AMO) 
and Hydroxylamine Oxidoreductase (HAO), are involved in nitrite 
formation [31,50]. Ammonium ion is oxidized to hydroxylamine by 
AMO. Subsequently, HAO converts hydroxylamine to nitrite [31,50]. 
In denitrification, nitrite is formed from nitrate by nitrate reductase 
similar to plants [31,50]. Allylthiourea specifically inhibits AMO by 
binding to copper in its active center [43,51], whereas nitrapyrin inhibits 
AMO by acting as an alternative substrate [43]. Protein modification by 
the oxidized product irreversibly inactivates not only AMO but other 

Figure 4: Suppression of nitrite formation. Inhibitory effects of enzyme inhibitors 
allylthiourea (AMO inhibitor), nitrapyrin (AMO inhibitor) and tungstate (nitrate 
reductase inhibitor) on NO2

- formation activity. The final concentration was 1 
mM for each. To confirm the association of microbial activities, the leaf extracts 
were treated by either filter or autoclave sterilization. Each bar represents the 
average with error bars (S.E., n=3). 

Figure 5: Suppression of nitrate degradation. Inhibitory effects of enzyme 
inhibitors allylthiourea (AMO inhibitor), nitrapyrin (AMO inhibitor) and 
tungstate (nitrate reductase inhibitor) on degradation activity of NO3

-. The 
final concentration was 1 mM for each. To confirm the association of microbial 
activities, the leaf extracts were treated by either filter or autoclave sterilization. 
Each bar represents the average with error bars (S.E., n=3).
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proteins in the cell as well [43,52]. Tungstate competes with molybdate 
in molybdate-dependent enzymes including NR, resulting inactivation 
of these enzymes [53,54]. In this study, we examined the effects of 
inhibitors of nitrification or denitrification on nitrite formation and 
nitrate degradation. As shown in Figures 4 and 5, nitrite formation and 
nitrate degradation were strongly inhibited by tungstate, whereas that 
allylthiourea and nitrapyrin had little effects. Based on these results, it is 
reasonable to conclude that nitrite formation was due to denitrification 
by NR but not nitrification by AMO and HAO. It should be noted that 
bacterial populations colonize in spermosphere as well as phyllosphere 
of spinach (Spinacia oleracea) seedlings and plants [55]. The nitrifying 
bacteria that produce nitrite would be included in such spermosphere 
and phyllosphere microbiota.

Prospects
Nitrite has long been considered as a toxic agent in human diet. 

Since inorganic nitrate is not an essential nutrient for humans, intake 
of nitrate and nitrite has been thought to be nonbeneficial. However, 
recent studies have suggested that dietary nitrate and nitrite are 
important for preventing metabolic syndromes [10]. In fact, there are 
less cardiovascular diseases in regions where consumption of vegetables 
is high [56] whereas there is no strong evidence that nitrate and nitrite 
intake from foods results in methemoglobinemia [57]. This is probably 
because, unlike infants, adults can reduce methemoglobin by the activity 
of NADH-cytochrome b5 reductase [58]. Also, vegetables contain lots 
of antioxidants as well as molecules that can suppress nitrosative stress. 
We suggest that nitrate contained in vegetables is beneficial for human 
health and that nitrite is not contained at physiologically effective 
concentrations in leafy vegetables as long as they are properly stored.
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