
International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 2 (April 2011) ©IJoAT 285

Dynamic Partial Reconfiguration of FPGA for SEU Mitigation

and Area Efficiency

Vijay G. Savani, Akash I. Mecwan

, N. P. Gajjar

Institute of Technology, Nirma University

vijay.savani@nirmauni.ac.in, akash.mecwan@nirmauni.ac.in , nagendra.gajjar@nirmauni.ac.in

Abstract

 The fast growing VLSI industry demands new techniques for configuring the FPGA.

When it comes to defence and space application the configuration of the FPGA becomes

more crucial. When it is required to configure the FPGA automatically, the need arises of

more sophisticated and fast techniques for reconfiguration of FPGA. In the space application,

the effect of radiation changes the bit patterns in the SRAM cells of FPGA, so it is required to

put FPGA into its original condition before SEU. Considering all the facts the paper discusses

the mitigation techniques for Single Event Upset (SEU) through Dynamic Partial

Reconfiguration of FPGA. It is also very useful to save area of the FPGA by reconfiguration.

For the proof of concept up and down sampler are developed as a reconfiguration module and

then used for Dynamic Partial Reconfiguration technique. The timing and area requirement of

reconfiguration using various techniques is the major focus of the paper.

Keywords: Single Event Upset (SEU), Reconfiguration, Mitigation.

1. Introduction

In the modern era the FPGAs are widely use to make the prototype of any system. In the

space application FPGAs are more used because the designing with FPGA is easy and fast.

Many times it is also required to reprogram the chip. FPGA is very flexible to reprogram.

Xilinx Virtex FPGAs offer to exploit the features of dynamic and partial run-time

reconfiguration.

One of the major motivations of this paper is to give the proof of concept of DPR to mitigate

the soft-errors in FPGA designs when we use it for space application. Single event upset

(SEU) is defined by NASA as "Radiation-induced errors in microelectronic circuits caused

when charged particles (usually from the radiation belts or from cosmic rays) lose energy by

ionizing the medium through which they pass, leaving behind a wake of electron hole pairs"

[10]. SEUs are soft errors, and are nondestructive. An SEU may occur in analogue, digital,

optical components, or may have effects in surrounding interface circuitry. FPGAs based on

SRAM can be reprogrammed an unlimited number of times, even in the end-user system. The

Single Event Upset occurs when radiation affects the transistors that are part of the look up

table logic of the FPGA. If the lookup table is affected by radiation can change the bit values

associated with the hardware made up of the current FPGA design. SEU is a change of state

caused by ions or electro-magnetic radiation striking a sensitive node (area) in a micro-

electronic device (Bit-Flip) as shown in the figure 1. The state change is a result of the free

charge created by ionization in or close to an important node of a logic element. In these

FPGAs, a multitude of latches, also called memory cells or RAM bits, define all logic

functions and on-chip interconnects. Such latches are similar to the 6- transistor storage cells

used in SRAMs, which has proved to be sensitive to single event upsets caused by high-

energy neutrons [11].

mailto:vijay.savani@nirmauni.ac.in
mailto:akash.mecwan@nirmauni.ac.in
mailto:nagendra.gajjar@nirmauni.ac.in

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 2 (April 2011) ©IJoAT 286

Fig 1. SEU in the FPGA

There are basically five area of the FPGA’s CLB which susceptible to SEU as shown in the

figure 2.

1. Upsets in the logic (LUT).

2. Upsets in the customization routing bits inside the CLB.

3. Upsets in the routing connecting CLBs and pins.

4. Upsets in the CLB flip-flops (flip-flops).

5. Upsets in BRAM.

Fig 2. Area of the FPGA’s CLB are affected by SEU

There are two main categories of radiation effect that are relevant for Static Random Access

Memory (SRAM) Field-Programmable Gate Arrays (FPGAs) in space: Total-Dose Effects

and Single-Event Effects (SEEs). Total-Dose Effects are cumulative effects that induce

degradation of electrical parameters at the device, circuit, and system level. SEU falls in to

SEE category. The technique of removing SEU is called mitigation. Various mitigation

techniques are available to get the rid of SEU. Some of the mitigation techniques are as

follows:

 Triple Modular Redundancy (TMR)

 TMR registers with Voters and Scrubbing

 Read back CRC

 Partial Reconfiguration

o Static Partial Reconfiguration

o Dynamic Partial Reconfiguration

Dynamic Partial Reconfiguration features open a wide area for designing systems exploiting

this method, if for example run-time adaptive systems change their behavior on-demand

initiated by processing input of data from external source. New approach using this feature

makes it possible to use FPGAs with smaller configuration memory and consequently smaller

chip size by storing configuration data on external memory. Thus it is possible to save cost

and reduce power consumption because it does not actually use new modules of a system and

do not allocate configuration memory and corresponding power consuming hardware.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 2 (April 2011) ©IJoAT 287

Nevertheless power dissipation during reconfiguration has to be considered [2]. The next

sections of the paper mainly concentrate on the Partial Reconfiguration of the FPGA.

2. Partial Reconfiguration

Partial Reconfiguration is reconfiguring only the part of FPGA. When the full FPGA is

configured it requires more time to get reconfigured but when part of FPGA is reconfigured

the process becomes fast. In the partial reconfiguration FPGA is divided in two regions one is

static part which will never change in reconfiguration and the second is dynamic part which

will change as and when require. This dynamic part can be reconfigured by two ways:

 Static Partial Reconfiguration

 Dynamic Partial Reconfiguration

In Static Partial Reconfiguration the system will stop working at the time of reconfiguration

and the part which is required to be reconfigured will only be programmed again. While in

the Dynamic Partial Reconfiguration the system will keep on running when the dynamic part

is getting reconfigured.

In Dynamic Partial Reconfiguration, while run-time, different configurations were sent via

the configuration access port to the configuration memory. Both logic elements and routing

resources can be influenced and adapted to a new functionality and routing. It becomes clear

that changes influence the behaviour of functions in the neighbourhood if signal lines cross

the area where partial reconfiguration occurs. Figure 3 shows schematically the process of

dynamic and partial hardware reconfiguration.

On the lower par of the figure the timeline with the different time steps can be seen. At t0 the

reconfigurable hardware is started and contains no configuration information. After a time

period until t1 the configuration data is transferred to the device. After the successful transfer

of configuration data the device starts with data processing within Configuration A and B.

These two configurations can be algorithms, finite state machines or other processing

elements. At t2 the functionality within configuration B is stopped and substituted by another

configuration. The configuration C is loaded to the device while configuration A stays in

operation. After transferring the data for configuration C at time step t3, the reconfigurable

hardware proceeds data processing with configuration A and C. This small example shows

the benefits of dynamic and partial reconfiguration. The architecture can be adapted to the

requirements of the applications while parts of the system stay operative. A system exploiting

this feature is described in [1].

Fig 3. Dynamic Partial Reconfiguration

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 2 (April 2011) ©IJoAT 288

3. Implementation

In Partial Reconfiguration the portion of the design which gets reconfigured, is called

Reconfiguration Module (RM). To explore the efficiency of partial reconfiguration we have

chosen one reconfiguration region and two RM, one is the digital up-sampler and another is

down-sampler. They were designed and configured using static and dynamic partial

reconfiguration. Figure 4 shows the RTL design of Up-Sampler and figure 5 shows the RTL

design of Down-Sampler.

Fig 4. RTL of Up –Sampler Design

Fig 5. RTL of Down –Sampler Design

The static part of the design consists of inputs to the system, start and stop control and a 100

MHz clock signal. While the dynamic part consist of up and down sampler as shown in

figure 4 & 5. Systems implementing partial self-reconfiguration are still uncommon in most

FPGA applications due to the relatively large overhead required for the initial analysis phase

to find a working tool flow. Xilinx has recently been attempting to make partially

reconfigurable systems easier to implement. Xilinx has added more documentation to

their website and has produced a more user-friendly floor planning tool used for partial

reconfiguration, but much of this information is currently limited to an Early Access area

that requires approval for access. A dynamic partial reconfiguring system on a Xilinx

Virtex FPGA is implemented by making use of the Internal Configuration Access Port

(ICAP). A partial bitstream is written to the ICAP, which then reconfigures the specified

portions of the FPGA with the new logic. Communication with the ICAP can be

implemented through soft core processor or through a custom VHDL logic design. Using the

custom logic or by writing the custom routine in the soft core processor we can frequently

reconfigure the portion of the design which is very critical and we can mitigate or remove

the accumulation of single bit-flip error which we called as SEU.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 2 (April 2011) ©IJoAT 289

These two reconfiguration modules are configured in the FPGA Xilinx Virtex5

XC5VLX110T-1ff1136 using static and dynamic partial reconfiguration. The designs are

compared for reconfiguration timing. The total time of configuring the full FPGA is also

compared. Figure 6 shows the dynamic reconfigurable portion in the final design.

Fig 6. Pblock area of Dynamic part of Design

4. Results

The figure 7 shows the reconfiguration menu which the part of routine written in the soft core

processor and which having the UART interface enable for the user interaction with core and

ICAP to do the reconfiguration. The figure 8 shows the timing requirement for

reconfiguration of the RM into the design.

Fig 7. Partial Reconfiguration of RM Module

Fig 8. Timing requirement for the configuration of RM

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 2 (April 2011) ©IJoAT 290

Table 1 is total device utilization summary when we combine the module into single design

without reconfiguration. Table 2 is area comparisons for the up and down converter and

shows the % saving in area when we use only one module into the design and doing the

reconfiguration of the required module into the design.

Table 1. Device Utilization Summary

(Device Used: Virtex5, 5vlx110tff1136-1)

XILINS VIRTEX5 XC5VLX110T-1FF1136

LOGIC UTILIZATION USED AVAILABLE UTILIZATION

NUMBER OF SLICE REGISTERS 3255 69120 4%

NUMBER OF SLICE LUTS 3245 69120 4%

NUMBER OF FULLY USED BIT SLICES 1328 5172 25%

NUMBER OF BONDED IOBS 22 640 3%

NUMBER OF BLOCK RAM/FIFO 18 148 12%

NUMBER OF BUFG/BUFGCTRLS 5 32 15%

NUMBER OF DCM_ADVS 1 12 8%

NUMBER OF DSP48ES 3 64 4%

Table 2. Area Comparison Up/Down Sampler

Device Used:

Virtex5

5vlx110tff1136-1

Device utilization summary: Available Up

sampler

alone

Down sampler

alone

Combine up and

down sampler

Average

% of Saving

Slice Logic

Utilization

Number of Slice Registers 69120 3 8 11 45.46 %

Number of Slice LUTs 69120 4 9 12 50.00 %

Number used as Logic 69120 4 9 12 50.00 %

Slice Logic

Distribution

Number of LUT Flip Flop pairs

used

-- 7 17 12 8.34 %

Table 3 shows the comparisons of the time required loading the Reconfiguration Modules into

the FPGA and the time required to load the entire design as a whole.

Table 3. Time Requirement for Reconfiguration

Reconfigure

Module
Size of bit

file
Time Require to

Reconfigure

(Using No of

Count)

No of

Processor

Clock

Cycle

Down

Sampler

43.379

Kbytes

0.99 µsec

(990 nsec)

1 Cycle

Up

Sampler

39.993

Kbytes

1.16 µsec

(1160 nsec)

1 Cycle

Blank 39.863

Kbytes

0.97 µsec

(970 nsec)

1 Cycle

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 2 (April 2011) ©IJoAT 291

5. Conclusion

This method is extremely useful for the space application as the SEU has to be mitigated. The

basic conclusion that follows from the paper is that the time requirement in case of dynamic

partial reconfiguration is very less compare to the full reconfiguration or the static partial

reconfiguration. Also and small FPGA can also be used for larger design by dividing the

design in the modules and we load the module into the FPGA as and when required by the

application.

Reference

[1] M. Ullmann, M. Huebner, B. Grimm, J. Becker: “An FPGA Run-Time System for Dynamical On-

Demand Reconfiguration”, RAW04, Santa Fee.

[2] M. Hübner, J. Becker: “Exploiting Dynamic and Partial Reconfiguration for FPGAs - Toolflow,

Architecture and System Integration”

[3] Cristiana Bolchini, Davide Quarta, Marco D. Santambrogio: “SEU Mitigation for SRAM-Based

FPGAs through Dynamic Partial Reconfiguration”

[4] Davin Lim and Mike Peattie: Two types for partial reconguration: Module based or small bit

manipulations, xapp290 (v1.0). May 2002.

[5] Davin Lim and Mike Peattie: Difference-based partial reconguration, xapp290 (v2.0). Dec 2007.

[6] Xilinx. Virtex 5 FPGA Configuration user guide, UG191 (v3.8), August 14, 2009.

[7] Xilinx. Virtex 5 FPGA user guide, UG190, November 5, 2009.

[8] http://trs-new.jpl.nasa.gov/dspace/bitstream/2014 /40763/1/08-09.pdf

[9] http://www.sti.nasa.gov/thesfrm1.

