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Abstract 

  The fast growing VLSI industry demands new techniques for configuring the FPGA. 

When it comes to defence and space application the configuration of the FPGA becomes 

more crucial. When it is required to configure the FPGA automatically, the need arises of 

more sophisticated and fast techniques for reconfiguration of FPGA. In the space application, 

the effect of radiation changes the bit patterns in the SRAM cells of FPGA, so it is required to 

put FPGA into its original condition before SEU. Considering all the facts the paper discusses 

the mitigation techniques for Single Event Upset (SEU) through Dynamic Partial 

Reconfiguration of FPGA. It is also very useful to save area of the FPGA by reconfiguration. 

For the proof of concept up and down sampler are developed as a reconfiguration module and 

then used for Dynamic Partial Reconfiguration technique. The timing and area requirement of 

reconfiguration using various techniques is the major focus of the paper.    
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1. Introduction 

In the modern era the FPGAs are widely use to make the prototype of any system. In the 

space application FPGAs are more used because the designing with FPGA is easy and fast. 

Many times it is also required to reprogram the chip. FPGA is very flexible to reprogram.  

Xilinx Virtex FPGAs offer to exploit the features of dynamic and partial run-time 

reconfiguration.  

 

One of the major motivations of this paper is to give the proof of concept of DPR to mitigate 

the soft-errors in FPGA designs when we use it for space application. Single event upset 

(SEU) is defined by NASA as "Radiation-induced errors in microelectronic circuits caused 

when charged particles (usually from the radiation belts or from cosmic rays) lose energy by 

ionizing the medium through which they pass, leaving behind a wake of electron hole pairs" 

[10]. SEUs are soft errors, and are nondestructive. An SEU may occur in analogue, digital, 

optical components, or may have effects in surrounding interface circuitry. FPGAs based on 

SRAM can be reprogrammed an unlimited number of times, even in the end-user system. The 

Single Event Upset occurs when radiation affects the transistors that are part of the look up 

table logic of the FPGA. If the lookup table is affected by radiation can change the bit values 

associated with the hardware made up of the current FPGA design. SEU is a change of state 

caused by ions or electro-magnetic radiation striking a sensitive node (area) in a micro-

electronic device (Bit-Flip) as shown in the figure 1. The state change is a result of the free 

charge created by ionization in or close to an important node of a logic element. In these 

FPGAs, a multitude of latches, also called memory cells or RAM bits, define all logic 

functions and on-chip interconnects. Such latches are similar to the 6- transistor storage cells 

used in SRAMs, which has proved to be sensitive to single event upsets caused by high-

energy neutrons [11]. 
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Fig 1. SEU in the FPGA 

 

 

There are basically five area of the FPGA’s CLB which susceptible to SEU as shown in the 

figure 2. 

1. Upsets in the logic (LUT). 

2. Upsets in the customization routing bits inside the CLB. 

3. Upsets in the routing connecting CLBs and pins. 

4. Upsets in the CLB flip-flops (flip-flops). 

5. Upsets in BRAM. 

 

Fig 2. Area of the FPGA’s CLB are affected by SEU 

 

There are two main categories of radiation effect that are relevant for Static Random Access 

Memory (SRAM) Field-Programmable Gate Arrays (FPGAs) in space: Total-Dose Effects 

and Single-Event Effects (SEEs). Total-Dose Effects are cumulative effects that induce 

degradation of electrical parameters at the device, circuit, and system level. SEU falls in to 

SEE category. The technique of removing SEU is called mitigation. Various mitigation 

techniques are available to get the rid of SEU. Some of the mitigation techniques are as 

follows: 

 Triple Modular Redundancy (TMR) 

 TMR registers with Voters and Scrubbing  

 Read back CRC 

 Partial Reconfiguration 

o Static Partial Reconfiguration  

o Dynamic Partial Reconfiguration 

 

Dynamic Partial Reconfiguration features open a wide area for designing systems exploiting 

this method, if for example run-time adaptive systems change their behavior on-demand 

initiated by processing input of data from external source. New approach using this feature 

makes it possible to use FPGAs with smaller configuration memory and consequently smaller 

chip size by storing configuration data on external memory. Thus it is possible to save cost 

and reduce power consumption because it does not actually use new modules of a system and 

do not allocate configuration memory and corresponding power consuming hardware. 
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Nevertheless power dissipation during reconfiguration has to be considered [2].  The next 

sections of the paper mainly concentrate on the Partial Reconfiguration of the FPGA. 

2. Partial Reconfiguration 

 

Partial Reconfiguration is reconfiguring only the part of FPGA. When the full FPGA is 

configured it requires more time to get reconfigured but when part of FPGA is reconfigured 

the process becomes fast. In the partial reconfiguration FPGA is divided in two regions one is 

static part which will never change in reconfiguration and the second is dynamic part which 

will change as and when require. This dynamic part can be reconfigured by two ways: 

 Static Partial Reconfiguration 

 Dynamic Partial Reconfiguration 

 

In Static Partial Reconfiguration the system will stop working at the time of reconfiguration 

and the part which is required to be reconfigured will only be programmed again. While in 

the Dynamic Partial Reconfiguration the system will keep on running when the dynamic part 

is getting reconfigured.  

 

In Dynamic Partial Reconfiguration, while run-time, different configurations were sent via 

the configuration access port to the configuration memory. Both logic elements and routing 

resources can be influenced and adapted to a new functionality and routing. It becomes clear 

that changes influence the behaviour of functions in the neighbourhood if signal lines cross 

the area where partial reconfiguration occurs. Figure 3 shows schematically the process of 

dynamic and partial hardware reconfiguration.  

 

On the lower par of the figure the timeline with the different time steps can be seen. At t0 the 

reconfigurable hardware is started and contains no configuration information. After a time 

period until t1 the configuration data is transferred to the device. After the successful transfer 

of configuration data the device starts with data processing within Configuration A and B. 

These two configurations can be algorithms, finite state machines or other processing 

elements. At t2 the functionality within configuration B is stopped and substituted by another 

configuration. The configuration C is loaded to the device while configuration A stays in 

operation. After transferring the data for configuration C at time step t3, the reconfigurable 

hardware proceeds data processing with configuration A and C. This small example shows 

the benefits of dynamic and partial reconfiguration. The architecture can be adapted to the 

requirements of the applications while parts of the system stay operative. A system exploiting 

this feature is described in [1]. 

 

Fig 3. Dynamic Partial Reconfiguration 
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3. Implementation 

In Partial Reconfiguration the portion of the design which gets reconfigured, is called 

Reconfiguration Module (RM). To explore the efficiency of partial reconfiguration we have 

chosen one reconfiguration region and two RM, one is the digital up-sampler and another is 

down-sampler. They were designed and configured using static and dynamic partial 

reconfiguration. Figure 4 shows the RTL design of Up-Sampler and figure 5 shows the RTL 

design of Down-Sampler. 

 

Fig  4. RTL of  Up –Sampler Design 

 

Fig 5.  RTL of  Down –Sampler Design 

The static part of the design consists of inputs to the system, start and stop control and a 100 

MHz clock signal. While the dynamic part consist of up and down sampler as shown in 

figure 4 & 5. Systems implementing partial self-reconfiguration are still uncommon in most 

FPGA applications due to the relatively large overhead required for the initial analysis phase 

to find a working tool flow.   Xilinx has recently been attempting to make partially 

reconfigurable systems easier to implement.  Xilinx has  added  more  documentation  to  

their  website and  has  produced  a  more  user-friendly floor planning tool used for partial 

reconfiguration, but much of this information is currently limited  to  an Early  Access area  

that  requires  approval  for access. A dynamic partial reconfiguring system on a Xilinx 

Virtex FPGA is implemented by making use of the Internal Configuration Access Port 

(ICAP).  A partial bitstream is written to the ICAP, which then reconfigures the specified 

portions of the FPGA with the new logic.  Communication with the ICAP can be 

implemented through soft core processor or through a custom VHDL logic design. Using the 

custom logic or by writing the custom routine in the soft core processor we can frequently 

reconfigure the portion of the design which is very critical and we can mitigate or remove 

the accumulation of single bit-flip error which we called as SEU. 
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These two reconfiguration modules are configured in the FPGA Xilinx Virtex5 

XC5VLX110T-1ff1136 using static and dynamic partial reconfiguration.  The designs are 

compared for reconfiguration timing. The total time of configuring the full FPGA is also 

compared.  Figure 6 shows the dynamic reconfigurable portion in the final design.  

 

Fig  6. Pblock area of Dynamic part of Design 

4. Results 

The figure 7 shows the reconfiguration menu which the part of routine written in the soft core 

processor and which having the UART interface enable for the user interaction with core and 

ICAP to do the reconfiguration. The figure 8 shows the timing requirement for 

reconfiguration of the RM into the design. 

 

Fig 7. Partial Reconfiguration of RM Module 

 

Fig 8. Timing requirement for the configuration of RM 
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Table 1 is total device utilization summary when we combine the module into single design 

without reconfiguration. Table 2 is area comparisons for the up and down converter and 

shows the % saving in area when we use only one module into the design and doing the 

reconfiguration of the required module into the design. 

Table 1. Device Utilization Summary 

(Device Used: Virtex5, 5vlx110tff1136-1) 

XILINS VIRTEX5 XC5VLX110T-1FF1136 

LOGIC UTILIZATION USED AVAILABLE UTILIZATION 

NUMBER OF SLICE REGISTERS 3255 69120 4% 

NUMBER OF SLICE LUTS 3245 69120 4% 

NUMBER OF FULLY USED BIT SLICES 1328 5172 25% 

NUMBER OF BONDED IOBS 22 640 3% 

NUMBER OF BLOCK RAM/FIFO 18 148 12% 

NUMBER OF BUFG/BUFGCTRLS 5 32 15% 

NUMBER OF DCM_ADVS 1 12 8% 

NUMBER OF DSP48ES 3 64 4% 

 

Table  2. Area Comparison Up/Down Sampler 

Device Used: 

Virtex5 

5vlx110tff1136-1 

Device utilization summary: Available Up 

sampler 

alone 

Down sampler 

alone 

Combine up and 

down sampler 

Average 

% of Saving 

Slice Logic 

Utilization  

Number of Slice Registers 69120  3  8  11  45.46 %  

Number of Slice LUTs 69120  4  9  12  50.00 %  

Number used as Logic 69120  4  9  12  50.00 %  

Slice Logic 

Distribution 

Number of LUT Flip Flop pairs 

used   

--  7 17 12 8.34 %  

 

 

Table 3 shows the comparisons of the time required loading the Reconfiguration Modules into 

the FPGA and the time required to load the entire design as a whole.  

Table 3. Time Requirement for Reconfiguration 

Reconfigure 

Module 
Size of bit 

file 
Time Require to 

Reconfigure                     

(Using No of 

Count) 

No of 

Processor 

Clock 

Cycle 

Down 

Sampler 

43.379 

Kbytes 

0.99 µsec      

(990 nsec) 

1 Cycle 

Up 

Sampler 

39.993 

Kbytes 

1.16 µsec    

(1160 nsec) 

1 Cycle 

Blank 39.863 

Kbytes 

0.97 µsec     

(970 nsec) 

1 Cycle 
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5. Conclusion 

This method is extremely useful for the space application as the SEU has to be mitigated. The 

basic conclusion that follows from the paper is that the time requirement in case of dynamic 

partial reconfiguration is very less compare to the full reconfiguration or the static partial 

reconfiguration. Also and small FPGA can also be used for larger design by dividing the 

design in the modules and we load the module into the FPGA as and when required by the 

application. 
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