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Editorial
Oogenesis in Drosophila was initially studied as a model system to

investigate the patterning of embryonic axis, however, it has since
become a powerful model system for investigating various aspects of
cellular, molecular and developmental biology. Oogenesis in
Drosophila melanogaster is a complex developmental process which
involves extensive cellular remodeling and communication [1-3]. The
entire process of oogenesis occurs within Drosophila ovary which
harbors 16 to 20 long tube-like structures known as ovarioles. These
ovarioles are held together by an enveloping peritoneal sheath consists
of a network of muscle fibers. Each ovariole represents an individual
linear array of egg assembly, with younger egg chambers near the
anterior and a series of progressively older egg chambers towards
posterior end. Egg chamber, the functional unit of oogenesis is
produced in the germarium which localizes at the anterior-most region
of the ovariole. The development of the egg chamber in each ovariole
has been subdivided into a series of 14 consecutive stages and the
approximate age of an egg chamber can be determined by
morphological features [1].

At the beginning of oogenesis, a stem cell residing at the tip of the
germarium divides to produce two unequal daughters. One daughter
cell remains a stem cell while the other daughter cell (cystoblast)
undergoes four rounds of divisions with incomplete cytokinesis to
generate a cyst of 16 interconnected cells. One of the 16 germline cells
in a cyst differentiates into the oocyte while the other 15 become nurse
cells [1]. The connective bridges of these germ cells are referred as ring
canals. Ring canals exhibit stereotyped arrangement which connects
the nurse cells with each other and with the growing oocyte. As the
germline cyst moves through the germarium, it becomes enclosed by a
layer of somatically derived follicle cells [1]. Subsequently, oocyte
becomes positioned at the posterior of the germline cyst by a process
mediated by several signaling events along with DE-cadherine and β-
catenin dependent adhesion between oocyte and follicle cells [4,5].
Once differentiated, the developing oocyte nucleus becomes
transcriptionally inactive, and therefore, most of the maternal products
required for oocyte maturation and early embryogenesis are
synthesized in the nurse cells and subsequently transported to the
oocyte through the network of ring canals [6].

The follicular epithelium is a key player that participates in
establishing both the anterior-posterior and dorsal-ventral egg axes [4].
The patterning of the follicular epithelium and polarization of the
oocyte axis by differential localization of maternal mRNAs are
achieved during oogenesis. Determination of oocyte involves multiple
reciprocal communication events between the germline and somatic
components of the egg chamber [7,8]. The oocyte polarity is defined by
two signaling events, both of which are induced by the epidermal

growth factor receptor (Egfr) ligand, Gurken (Grk), associated with the
oocyte nucleus [7,8]. Therefore, formation of proper dorsal ventral axis
requires the controlled export of gurken mRNA from the nurse cells to
oocyte, and thereafter, regulated distribution of the gurken RNA and
protein at the antero-dorsal corner of the oocyte, ensuring precisely
localized signaling [8]. The first Grk signal induces the follicle cells
overlying the oocyte to take on posterior fate. The posterior follicle
cells respond by sending an unidentified signal back to the oocyte. In
response to this signal, the Microtubule Organizing Centre (MTOC) at
the posterior of the oocyte disassembles and microtubules (MTs)
nucleate from the anterior and lateral cortices of the oocyte [9,10]. This
reorganization of the MT network is necessary for migration of the
oocyte nucleus and associated Gurken to an antero-lateral position
[11,12]. Thereafter, a second Gurken signal at stage 9 induces adjacent
follicle cells to adopt dorsal fate. After determination of D/V axis, size
of the oocyte rapidly increases. During advance stages (stage 10B
onwards) of egg chamber development, the polyploid nurse cells
contract and rapidly transfer the residual of their cytoplasmic contents
to the oocyte. This process is referred to as “cytoplasmic dumping”
[1,13].

During egg chamber development and axes determination, a
dynamic cytoskeleton is critical for generating epithelial polarity,
intercellular transport, stable intercellular bridges, cell migrations, cell
shape changes, nurse cell contraction and specific subcellular
localization of many oocyte-patterning determinants [13,14].
Mutations, which interfere with cytoskeletal integrity and arrangement
of follicle cells, exhibit abnormalities in various aspects of oogenesis.
Several genes such as armadillo, DE-cadherine, egghead, α- spectrin,
merlin etc. are known to be required for maintenance of epithelial
integrity during progression of oogenesis [15-18]. Mutations in
junction-associated membrane proteins like Disk-large and Scribble
also disrupt follicle cell proliferation and polarity [19,20]. In addition,
several genes involved in actin biogenesis are also critically important
for egg chamber development [13,21]. Taken together, Drosophila
oogenesis has provided important insight of cellular functioning and
development in the past and expected to continue to do so in the
future.
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