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Abstract

The present study was conducted to assess the impact of nitrogen treatment on the physiological aspects of cork
oak (Quercus suber L.) seedlings from acorns collected from seven sources (Kroumiry and Cap-bon). Nitrogen
fertilization increased significantly specific leaf area (SLA) and leaf mass area (LMA) of Q. suber L grown for 2
months at nitrogen concentration 1.5 g/l, respectively. Results indicate that leaf hydraulic conductance (K| eaf)
increased significantly under nitrogen treatment, but no significant correlation was observed between K ¢4, A and
gs. Stomatal conductance (gs), transpiration rate (E), net photosynthetic rate (A) and maximum efficiency of PSII
(Fv/Fm) were investigated in seedlings of Q. suber L. This study validated that K ., the stomatal conductance,
transpiration rate and net photosynthetic rate of Q. suber were performed under increasing Nitrogen fertilizer.
Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water
cycles and affecting surface-atmosphere energy exchange. We found that the stomatal conductance, transpiration
rate, net photosynthetic rate and maximum efficiency of PSIl were showed variation in both photosynthetic traits due
essentially to local genetic adaptation. However, the seven seedlings sources of cork oak (Q. suber L.) showed a
different response of physiological aspects during nitrogen treatment. These findings suggest that nitrogen treatment
affects gas exchange and the photosynthetic capacity of the cork oak. Based on the above results, we conclude that
nitrogen fertilizer treatments could promote photosynthetic performance of Quercus suber by stimulating
morphological and physiological responses.

Keywords: Quercus suber; Nitrogen treatment; Stomatal
conductance; Transpiration rate; Net photosynthetic rate; Maximum
efficiency of PSII; Leaf hydraulic conductance

Introduction

Cork oak (Quercus suberL.) is a typical Mediterranean resprouting
species, which presents great interest for restoration in fire-prone
ecosystems [1] and great socio-economic importance in the
Mediterranean region [2]. Cork oak woodland (444 hectares, 70% of
land utilization) is a major factor in Tunisia due to forestland with
small treeless areas [3]. Attempts at restoration of cork oak stands have
been largely unsuccessful because of the poor natural regeneration of
this species and the high seedling mortality after transplanting [4]. In
North Africa, cork oak forests extend from the Atlantic Coast in
Morocco through the Algerian Coast to the North Western of Tunisia
with a scattered distribution over the two Mountain ranges of
Kroumirie and Mogod. Excessive human pressure is usually pointed as
the main cause of the reduction in cork oak forest ecosystems [5].

As with most agricultural crop production the major driver of soil
N,O emissions is likely to be nitrogen fertilizer, added to the soil to
increase biomass production [6]. Studies showed that nitrogen
application exerted a significant increase in protein content and
improved dough quality [7]. Several studies have investigated nitrogen
fertilizer uptake, assimilation and effects on plant development [8].
Nitrogen is an essential component of chlorophyll that will reduce
chlorophyll formation if lacking from the mineral nutrient supply of a

plant, with concomitant effects on photosynthesis [9]. Nitrogen
fertilizer plays a significant role in soil carbon sequestration by
increasing crop biomass and by influencing the microbial
decomposition of crop residue [10,11]. Although applications of
nitrogen fertilizer consistently increase crop biomass, its effect on soil
carbon content varies with the type of soil [12], which affects the flux
of CO, into the atmosphere. Since nitrogen (N) is strongly limiting in
Mediterranean forests [13], we analyzed the effects of nitrogen
fertilizer on photosynthetic measurements of Q suber L. Fertilizer
management effects on plant water use and drought stress during
production for many crops has not been evaluated fully [14]. With
some woody perennial plants it is possible that growth can be
enhanced more by minimizing water stress than by increasing fertility
[15]. Nitrogen is a vitally important element for plant sand it
profoundly influences leaf anatomical and functional traits [16].
Previous studies have shown that leaf nitrogen promotes A by
increasing Rubisco content and CO, diffusion conductance [17].
However, the correlation of leaf nitrogen content per leaf area with
Kieaf remains to be investigated.

The increasing demand for cork and the low natural regeneration of
this species clearly justify intensive planting with improved material. In
the present study, we have investigated the possibility that nitrogen
fertilizer might be beneficial for cork oak growth and development by
analyzing physiological parameters including photosynthetic and gas-
exchange parameters in nursery seedlings from different provenances
in Tunisia.
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The study sought to compare leaf hydraulic conductance,
transpiration rate, stomatal conductance, photosynthetic rate,
maximum efficiency of PSII in response to nitrogen treatment on cork
oak (Q suberL.).

Materials and Methods

Experimental description and plant material

The study was carried out on cork oak (Q suber L.) seedlings
growing in the nursery located in the greenhouse of INRGREF (Tunis)
under semi-arid bioclimate. Q. suber seedlings were collected from
seven different locations in Kroumirie and Cap Bon in Tunisia (8
individuals from each populations of Sidi Zid (SZD), Kef Errand
(KER), Djebel Serdj (JES), Djebel Chehid (JCH), Ain senoussi (AS),
Feija (FEJ), Méjen essaf (ME])). The plants were growing 2 months at a
nitrogen concentration of 1.5 g/l. The experiments use nitrogen
fertilizer: Ammonium nitrogen (NH*-N).

The experimental design in the greenhouse was performed with a
completely randomized design of 4 replicates per treatment. Plants of
each population were fertilized twice a week from July 2015 to August
2015. The experiment was conducted on 6 month-year-old plants of Q.
suberL.

The stomatal conductance, transpiration rate and net
photosynthetic rate were measured on fully expanded leaves at similar
development stages with portable open gas-exchange analysis systems
with leaf chambers (LI-6400, Li-Cor, Inc., Lincoln, NE, USA).

The maximum quantum efficiency of photosystem II (Fv/Fm) was
measured on the same leaves as above with a portable fluorometer. The
leaves were dark-adapted with clips for 20 min. The minimal
fluorescence (Fo) was measured under a weak pulse of modulating
light over 0.8s and maximal fluorescence (Fm) was induced by a
saturating pulse of light (8000 mmol m2s!) applied over 0.8 s. Then,
Fv/Fm was calculated, where Fv was the difference between Fm and
Fo.

Leaf hydraulic conductance (kie,s mmol m2s"! MPa'!) for leaves
was measured using the in situ evaporative flux method, with kL
calculated as [18]:

kleaf = E/AYtem-leaf

Where E is the transpiration rate (mmol m?2s!) and AWien jeaf i
the difference between stem xylem water potential (¥,; MPa) and
leaf water potential (W}, MPa).

Statistical analysis

Effects of fertilization (N) on the morphological and physiological
parameters were tested by ANOVA. Tukey’s test was used to evaluate
differences between the means (P < 0.05). The relationship between net
photosynthesis (A), leaf hydraulic conductance (K., and stomatal
conductance (gs) was tested by linear regression.

Results and Discussion

For above ground plant tissue, our results show that the specific leaf
area (SLA), leaf mass area (LMA) of the seedlings subjected to nitrogen
fertiliser significantly increased when compared with non-N fertiliser
(Figure 1) [19]. Contrary observed an exponential reduction of the
total leaf area for Quercus canariensis. The specific leaf area and leaf

mass area of Q. suber L. increased significantly in the nitrogen
fertilization condition (Figure 1). The small effect of nitrogen on
photosynthetic parameters suggests that the leaf photosynthetic rate
remained constant, which is in agreement with studies of Lambers et
al. [20] and McDonald et al. [21] showing little dependence of leaf
photosynthesis on nitrogen supply. Increasing the rate of nitrogen
supply increased the SLA and the organic nitrogen concentration in
the leaf tissue. Nitrogen is a vitally important element for plants and it
pro-foundly influences leaf anatomical and functional traits [16].
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Figure 1: A. Leaf mass area (LMA) expressed as leaf m? per ground
m? and; B. Specific leaf area (SLA) expressed as leaf m2. Values are
average of each treatment (n=8).
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Figure 2: Leaf hydraulic conductance (Kpe,s mmolsMPa'm™2) of
cork oak (Q suber L.) under nitrogen fertilizations. Mean values +
standard errors. Vertical line indicates statistical difference, while ns
stands for not significant according to LSD (p < 0.05).

Leaf hydraulic conductance (K, is a major determinant of
photosynthetic rate in plants. Results indicate that leaf hydraulic
conductance increased significantly under nitrogen treatment (Figure
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2), no significant correlation was observed between K., A and gs
(Figure 3). Previous studies have shown correlations between A, gs and a
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E, gs, A and FV/Fm differed from cork oak between sites. Nitrogen
fertilization and source of cork oak no significantly influenced E, gs, A
and Fv/Fm. Indeed A, E, FV/Fm and gs showed similar trends for cork
oak (Q. suber L.) from the seven sources (Kroumirie and Cap-bon).
The highest A values were measured for cork oak (Q. suberL.) in the
nitrogen fertilization condition. Maximum A values (7.87 umol CO, m

2571) were found in ME], while the lowest in JCH with 3.76 umol CO,
m~2s7, respectively (Figure 4). Similarly, the highest E values were
measured in MEJ, 1.80 mol H,O m~2s~1, the lowest in JCH, 1.05 mol
H,0 m~2s7! (Figure 5).

The highest gs in the nitrogen fertilization condition was in AS (0.16
mmol m~2s7!) and the lowest in SDZ (0.1 mmol m~2s71). The lowest
values were registered from SDZ (0.06 mmol m~2s71), while in AS gs
approached the highest values (0.14 mmol m=2s~!), mostly for the
control (Figure 6).

Provenance

Figure 6: Stomatal conductance (gs, mol m2s!) of cork oak (Q.
suber L.) under nitrogen fertilizations. Mean values + standard
errors. Vertical line indicates statistical difference, while ns stands
for not significant according to LSD (p < 0.05).

Chlorophyll fluorescence (Fv/Fm) not differed among seedling
sources as well as among nitrogen fertilization treatment. Fv/Fm
represents the maximum photochemical efficiency of PSII, which is an
important index of the degree of environmental stress. Fv/Fm of each
treatment slightly decreased when compared with the control (Figure
7). For all cork oak (Q. suber L.) sources, nitrogen fertilization
treatments showed no effect in Fv/Fm, however, there were no
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significative differences in the induction of Fv/Fm among the seven
seedling sources (Figure 7). Under well watered condition, quantum
efficiency of photosystem II (Fv/Fm) ratio in bioregulators treated
plants was not showing significant variation. Plants treated with N
fertilizer maintained higher quantum yield of photosystem II (Fv/Fm)
than the control just in JCH and AS seedling sources. Chlorophyll
fluorescence dynamics are an ideal internal measure of photosystem
injury from various stresses [26,27] and can rapidly and sensitively
reflect the relationship between the environment and the plant’s
photosynthetic physiological state.
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Figure 7: Maximum efficiency of PSII of cork oak (Q. suber L.)
under nitrogen fertilizations. Mean values + standard errors.
Vertical line indicates statistical difference, while ns stands for not
significant according to LSD (p < 0.05).

The above-mentioned photosynthetic changes may play an
important role in determining how cork oak plants adjust their
photosynthetic. Photosynthetic traits decreased due to a biochemical
and morphological acclimation and environmental constraints, such as
water and nutrient supply [28,29]. Those changes are associated with
decreases in the nitrogen concentrations and the increase of LMA due
to the assimilation of photosynthetic products [28]. Plants are
therefore expected to make an optimal nitrogen allocation into leaf
photosynthetic proteins to achieve the maximum carbon gain in their
own light environment [30]. These physiological changes are also
associated to morphological modifications during stress, as for
example a reduced leaf area [31].

Moreover, photosynthesis is aptly regarded as the most important
physiological process in plants which is particularly sensitive to effects
of water deficiency [32]. Even a small decrease in the water potential of
a plant causes its stomata to closeand decreases the intensity of
photosynthetic assimilation of CO, [33]. The reduction in
photosynthetic activity under stress takes place due to decline in CO,
availability caused by the restriction of CO, diffusion [23] and
inhibition of ribulose-1,5-bisphosphate (RuBP) synthesis [33,34]. Our
results suggest that more detailed anatomical and structural studies are
needed to elucidate the impacts of leaf feature traits on Kj.,¢ and gas
exchange in cork oak.

Conclusion

The present study was motivated by the need to examine the
nitrogen treatment and genetic sources influences on photosynthetic
traits variation among seedlings of cork oak (Quercus suberL.) sources
to assist reforestation decisions. Our study revealed that (i) The specific
leaf area (SLA) and leaf mass area (LMA) increased significantly in the

nitrogen fertilization condition (ii) the seedling sources of Q. suber L.
differed in maximum efficiency of PSII (Fv/Fm), photosynthetic rate
(Anet), transpiration rate (E) and stomatal conductance (gs) (iii) the
seedling sources demonstrated different responses of photosynthetic
traits under nitrogen treatment, suggesting that the observed variation
in growth among seed sources resulted largely from genetic variation
in functional traits rather than from photosynthetic traits. Present
results may have practical applications to help maximize physiological
performances and optimized resource use efficiency but the
physiological mechanisms need further elucidation. The genetic basis
of photosynthesis affected photosynthetic traits in various plants.
However, the genetic relationship sources and photosynthesis remains
to be elucidated.
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