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Introduction
Preclinical studies have revealed that both volatile anesthetics and 

the surgical stress-related neuro-inflammation are capable of facilitat-
ing an Alzheimer’s disease (AD)-like neuropathological process [1-7]. 
We present a comprehensive review of the literature on this controver-
sial topic. The evidence supporting the various mechanisms by which 
anesthesia and/or surgery may promote AD-like changes will be dis-
cussed. 

Alzheimer’s Disease (AD)
Alzheimer’s disease (AD) is the most common form of dementia in 

elderly people [8].The current disease model of brain pathology under-
lying AD is characterized by accumulation of β amyloid plaques and 
tau tangles, which account for synaptic loss and dysfunction, neurode-
generation, and a decrease in brain size [8]. Typically, the symptoms 
of mild cognitive impairment (MCI) or dementia lag behind AD pa-
thology by many years, i.e., many patients have the neuropathological 
substrate of β amyloid without signs or symptoms of cognitive impair-
ment. This process can span over decades and include multiple stages: 
preclinical (no complaints or impairments), mild cognitive impair-
ment, and dementia [8,9]. Clinically, the patient presents with memory 
loss, general cognitive decline, and as the final step, dementia. The 
majority of cases of AD are late-onset and sporadic in origin [10,11]. 
While risk factors for the development of AD, including advanced age, 
tobacco use, and presence of the apolipoprotein (ApoE) ε4 status allele 
have been identified, none has been found to reliably predict AD in 
individual subjects [12-14]. Since AD is a neurodegenerative disorder, 
it can only be diagnosed with a post-mortem neuropathological exami-
nation, revealing plaques composed of extracellular aggregates of the 
β -amyloid peptide and intracellular neurofibrillary tangles composed 
of hyper phosphorylated tau protein [8]. Clinically, the diagnosis can 
be made with evidence of memory impairment and at least one other 
cognitive disturbance (aphasia, apraxia, agnosia or executive dysfunc-
tion), a significant decline from premorbid level, and a gradual onset 
with progressive course [15-17]. 

Postoperative Cognitive Dysfunction (POCD)
Postoperative Cognitive Dysfunction (POCD) is a form of cognitive 

decline that may occurs after any operation, but is particularly common 
following cardiac and orthopedic procedures [18-21]. POCD is charac-
terized by impairment of memory, learning difficulties, and reduced 
ability to concentrate after surgery [19,22-26]. POCD can be classified 
as acute (weeks), intermediate (months), and long-term (years) by tim-
ing of occurrence of cognitive decline after the operation [22,24,27-30]. 
The first adequately powered study of POCD was conducted by Moller 
and colleagues in 1998, who studied 1218 patients ages 60 and older 
scheduled for elective non-cardiac surgery [26]. The salient finding 
of the study was that 27% and 10% of patients were found to develop 
POCD at 1 week (early POCD) and at 3 months (late POCD) after sur-
gery, respectively. Factors associated with development of early POCD 

included increasing age, prolonged exposure to anesthesia, poor educa-
tion, post-op infections and respiratory complications [26]. Since this 
landmark publication there has been a plethora of studies examining 
this area suggesting that up to 50% of surgical patients suffer from 
POCD in the early weeks following a major non-cardiac surgery [13-
19]. Although cognitive performance gradually improves over time in 
the majority of patients with POCD, with an incidence of 10-14% at 3 
months and 1% at one year after surgery [22,24,26,28,29], permanent 
cognitive decline after surgery has been described [24]. Clouding the 
picture is the fact that POCD does not have universally accepted di-
agnostic criteria, as multiple neuropsychological battery of tests with 
various cutoff scores as well as varying post-surgical time-points for 
assessment are used in diagnosis [19,22,24,28,31-35]. This problem 
was highlighted by Newman et al. who reported in their comprehen-
sive review of POCD in non-cardiac surgery that the timing of the first 
postoperative assessment of cognition varied between few days to ap-
proximately 1 year after surgery [22]. Some studies conducted multiple 
follow up assessments whereas others only used one [22]. Some defined 
POCD as a decrease in performance equal to or greater than 1 SD from 
pre-operative performance on 2 or more tests [36] whereas other stud-
ies required 1 SD decline in anywhere from one test to 20% of the tests 
[37,38]. Some of them used results of multiple neuropsychological tests 
to produce a single score while others used multiple scores. Finally, 
Newman et al. calculated that 70 different neuropsychological tests 
have been used in the studies reviewed [22]. The fact that some stud-
ies failed to evaluate baseline cognitive function prior to surgery and 
only examined cognitive function after surgery while other evaluated 
the baseline function anywhere from 1 day to several years before sur-
gery [39] adds another layer of complexity to a better understanding of 
POCD [19,22]. The lack of universally accepted diagnostic criteria and 
varying post-surgical time-points for assessment has been highlighted 
in the recent review of POCD following cardiac surgery [19]. 
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emia, have been suggested to induce and promote AD-neuropathology 
and lead to postoperative cognitive dysfunction [6,40]. 

Pre-clinical studies

Volatile anesthetics: Multiple recent studies explored mechanisms 
by which anesthetics may promote AD, including apoptosis, caspase 
activation, AB oligomerization, tau hyperphosphorylation, and TNF-
alpha release [2,5,41-50]. The effects of anesthetics on protein expres-
sion and long-term potentiation in the hippocampus, an area of the 
cortex highly indicated in AD pathology, have been of particular inter-
est. In a murine model, Xie et al, showed that the inhalational anes-
thetic, sevoflurane, induces apoptosis and elevates levels of β amyloid 
[41]. Similar results were found with isoflurane, another commonly 
used inhalational anesthetic [42,44]. Interestingly, AD transgenic mice 
showed a greater degree of neurotoxicity as compared to naïve mice 
when exposed to sevoflurane, suggesting that brain with AD-neuropa-
thology may be more vulnerableto inhalation anesthetics [51]. Admin-
istration of inhalational anesthetics was also associated with functional 
decline which is normally found in AD [45,52]. Isoflurane administra-
tion to wild-type rats and mice produced prolonged decrease in mem-
ory and learning [45,52]. Lu and colleagues who examined the effect 
of sevoflurane on caspase activation in brains of naïve neonatal mice 
and neonatal AD transgenic mice [51] reported a significant increase 
in caspase activation in both naïve mice and AD transgenic mice when 
compared to controls. Disconcertingly, this increase was significantly 
greater in the AD mice [51]. In contrast, in vitro studies using human 
cortical neuron cellfailed to demonstrate an increase in expression of 
caspase 3 with clinically relevant concentrations of volatile anesthetics 
(including sevoflurane, isoflurane and desflurane) [53]. 

Halothane and isoflurane have been found to enhance amyloid 
β oligomerization [54,55] by lowering the amyloid β concentration 
necessary to initiate oligomer formation [55]. These results caution 
against using inhalational anesthetics in patients with preexistent levels 
of brain β amyloid, like in patients with AD [41]. It should be noted, 
however, thatethanol and propofol were found to modestly enhance 
oligomerizationas well [54]. 

Growing literature suggests that volatile anesthetics decrease syn-
aptic plasticity in the hippocampus by impairing long-term potentia-
tion in the murine hippocampus [56,57]. Finally, exposure to 1 MAC 
isoflurane for 3 hours was associated with a significant up or down-
regulation of hippocampal proteins that have also been shown to play a 
role in AD pathology [58]. 

Perioperative neuro inflammation: Since inflammatory process 
including activated microglia and elevated levels of pro-inflammatory 
mediators (e.g., cytokines) has been implicated in the process of β- am-
yloid accumulation in AD [59-63], the effects of surgery-induced neu-
roinflammation on AD neuropathology has been an area of research 
[2,47,48,64-68]. Hu and colleagues were one of the first to propose that 
the systemic inflammatory response to surgical stress and not the an-
esthetic agents is the link between POCD and AD [1]. They suggest 
that peripheral inflammatory cytokines released during surgery enter 
the blood brain barrier, and subsequently activate microglia cells and 
vascular endothelial cells to release various inflammatory mediators. 
Furthermore, surgical stress induces a neuro inflammatory response 
which also activates microglial and vascular endothelial cells [3,4,67-
69]. These inflammatory mediators contribute to cognitive decline by 
influencing the production and effects of neurotransmitters, neuro-
plasticity, and neurotoxicity [3,4,67-69]. Parenthetically, surgery-relat-
ed inflammation and inhalational anesthetics, isoflurane in particular, 

increase the permeability of the blood-brain barrier thus possibly me-
diating the entry of inflammatory cytokines into the brain [48,70,71]. 
The permeability of the blood-brain barrier in a murine animal model 
wasreported to be affected by nociceptive signaling as well [72]. In a 
landmark study, Wan and colleagues used a rat animal model to exam-
ine whether a surgical procedure can trigger a pro-inflammatory cyto-
kine response in the hippocampus and whether such an inflammatory 
response is associated with cognitive dysfunction [3]. The animals were 
randomly assigned to one of the three groups: naïve controls, anesthe-
sia without surgery, and anesthesia with surgery (splenectomy). The 
animals were anesthetized with fentanyl and droperidol. Consistent 
with their original hypothesis, anesthesia alone was not associated with 
cognitive decline as compared to control rats [3]. There was, however, 
a significant cognitive impairment on postoperative day one and three 
in splenectomized rats when compared to control rats. A correspond-
ing glial activation in the hippocampus suggesting neuroinflammation 
in splenectomized rats was seen on day one and three. Similarly, other 
animal models of surgery-induced cognitive decline (orthopedic sur-
gery, hepatectomy, minor abdominal surgery) have been described in 
associating surgical trauma with memory dysfunction and pathogenic 
hallmarks in rodents [67,68,73,74]. These results point toward surgical 
trauma-related neuroinflammation as the pivotal mechanism underly-
ing POCD [3]. 

Other factors: Anesthesia can impair normal thermoregulatory 
control [75]. Planel and colleagues examined the possibility that gen-
eral anesthetics promote AD-neuropathology by inducing hypother-
mia. They found that anesthetic-induced hypothermia leads to rapid 
and robust tau hyperphosphorylation in the brain of normal mice after 
1 hour of exposure, regardless of the anesthetic used (chloryl hydrate, 
pentobarbital sodium, isoflurane) [76]. Further, once normothermia 
was achieved the tau hyperphosphorylation was completely reversed; 
leading to the conclusion that tau hyperphosphorylation was second-
ary to anesthetic-induced hypothermia and not due to the anesthetic 
itself. These effects of anesthetic-induced hypothermia on tau-phos-
phorylation, solubility, and function were later confirmed in mice ex-
pressing a tau mutation that causes frontal-temporal lobe dementia, 
suggesting that patients with preexistent AD may be at risk of disease 
progression when exposed to perioperative hypothermia [77]. 

Hypoxia and hypocapniahave also were examined [6] as promot-
ers of AD pathology. Xie and colleagues exposed human neuroglioma 
cells to hypocapneic conditions (PCO2<40 mmHg) or hypocapneic 
plus hypoxic (>21% oxygen) conditions and found that hypocapnia 
induced caspase-3 activation and apoptosis. Hypoxia combined with 
hypocapniainduced apoptosis in a synergistic manner. Hypoxia alone 
did not increase caspase-3 activity [75]. The same group reported that 
the inhalational anesthetic, Desflurane, promotedapoptosis when ad-
ministered under hypoxic condition [5]. Desflurane (12%) and hypoxia 
when applied alone failed to induce these changes [5]. Finally, mild 
and severe brain ischemia, frequently encountered intra-operatively in 
older patients, has been found to increase β amyloid deposits in animal 
models of ischemia and in postmortem human AD brain [6,78-81]. 

Human studies

In contrast to a plethora of animal studies suggesting a connec-
tion between exposure to surgery and anesthesia and development of 
AD-neuropathology, there is currently only limited evidence to sup-
port such a relationship in humans. Gasparini and colleagues exam-
ined the hospital records of 115 patients with probable AD based on a 
clinical diagnosis [82]. Each of these patients was age and sex-matched 
with 2 patients with non-degenerative neurological diseases and 2 pa-
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tients with Parkinson’s disease. Records were reviewed for exposure 
to anesthesia in at least 1 year but no greater than 5 years before their 
diagnosis of AD. No association between AD and exposure to anesthe-
sia in these preceding years was found. There was also no association 
found between number of surgical procedures and development of AD. 
Since patients with AD were significantly older at the time they under-
went surgery, the authors concluded that older age represents a risk 
factor for development of POCD [82]. Avidanet et al. [39] reviewed 
retrospectively the records of 214 non-demented and 361 of mildly de-
mented (Alzheimer’s-type) patients, and divided them in one of three 
groups: history of non-cardiac surgery, major illness, or control group. 
All patients had at least one thorough baseline cognitive function test 
and underwent annual clinical assessments and psychometric testing. 
The cognitive function declined more rapidly in demented patients 
than non-demented patients regardless of whether they had non-car-
diac surgery, a major illness, or neither [39]. The progression of non-
demented patientsto dementia was not related to non-cardiac surgery 
or a major illness. Progression to dementia was, however, predicted by 
older age. The authors concluded that non-cardiac surgery was not as-
sociated with an increased rate of progression of disease in those al-
ready diagnosed with dementia nor was it associated with new develop-
ment of dementia [39]. In a large retrospective case-control study Zuo 
and colleagues attempted to determine whether spine surgery under 
general anesthesia and anesthetic choice contributed to AD develop-
ment [83]. Researchers followed 10,000 patients who underwent spinal 
surgery over a 12-year period. They identified 26 of these patients that 
developed AD and 161 control patients who had spinal surgery but did 
not develop AD after the surgery. No difference in gender, length of 
operation, length of hospital stay, or type of anesthetic was found be-
tween the groups [83]. The only significant difference was age of the 
two groups: patients who developed AD were significantly older than 
patients who did not. 

Growing evidence points towards reduced brain reserves [84] as a 
risk for developing of POCD. Bekker and co-workers who examined 
the impact of preoperative cognition on postoperative cognitive func-
tion, found preexistent Mild Cognitive Impairment to be a risk factor 
for developing postoperative cognitive decline [85,86]. Lower educa-
tional level was also reported to be a risk factor for development of 
POCD [25]. 

Evered et al. examined the relationship between preoperative plas-
ma biomarkers for AD Aβ42 and Aβ40 and postoperative cognition in 
332 patients scheduled for CABG [87]. Blood levels of Aβ40 and Aβ42 
peptides are thought to have diagnostic and predictive value in the evo-
lution of AD [88], with lower plasma levels of Aβ42 and Aβ40 related to 
deposition of β amyloid in the brain, indicating preclinical stage of AD 
[88]. This study found significantly lower levels of preoperative plasma 
Aβ42 and Aβ40 in patients who developed postoperative cognitive de-
cline, providing further evidence linking postoperative cognitive de-
cline with preclinical AD [88]. A robust neuroinflammatory response 
in the CSF in the perioperative period, including interleukin-6, tumor 
necrosis factor alpha, interleukin-10, S100Beta, and tau, has been con-
firmed by other groups as well [89]. 

Summary
Does anesthesia and surgery promote AD? The data in humans is 

still too limited to reach a firm conclusion in this causal relationship. 
Repetitive exposure to anesthetics has not been associated with cogni-
tive decline in population studies [28,39,90-93] and the use of volatile 
anesthesia has been characterized by an excellent safety record [94]. 

Having said that, the inverse correlation between the cumulative expo-
sure to general and spinal anesthesia before the age of 50and the onset 
of AD seem to support the hypothesis that anesthesia and surgery pro-
mote AD [64]. Finally, it is not clear whether patients with POCD are 
at higher risk for subsequent development of AD.

Collectively, the available preclinical results raise concern that 
anesthetic agents and the surgical trauma-related neuroinflammation 
may interact with the established pathways of neurodegeneration, lead-
ing to increased neurotoxicity, and promote/accelerate AD pathology. 
Preexistent AD pathology may be associated with increased vulner-
ability to both processes and increase risk for postoperative cognitive 
decline. Some suggested that patients with preexistent β amyloid de-
posits could be at risk for AD acceleration with general anesthesia and 
postoperative cognitive decline [64,95]. While the clinical evidence is 
insufficient to consider changing the current use of volatile anesthetics 
in anesthesia, the evidence suggesting the possible role of hypoxia, hy-
pocapnea and hypothermia in cognitive decline should guide clinicians 
to more tightly regulate these parameters in elderly patients. 
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