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INTRODUCTION

Fluoxetine is one of the important antidepressant of selective 
serotonin reuptake Inhibitors (SSRI) group, widely used to treat 
various mental health disorders, such as Moderate-to-severe 
depression and anxiety [1,2]. Symptoms contribute to insomnia, 
loss of Appetite, lack of motivation, and increased physical fatigue 
[3–5]. All these mentioned Symptoms may however, influence 
physical performances in athletes.

Fluoxetine elevates serotonin and tryptophan synaptic levels, 
an essential serotonin. Precursor [6,7]. Evidence shows that 
serotonin has central and peripheral effects. Kynurenine 
Pathway (KP) of tryptophan (TRP) metabolism is thought to be 
involved predominantly invariations of serotonin levels in both 
areas, but less is known in the periphery [8]. A Combination 
of endurance, physical exercise, and fluoxetine treatment has 

been shown to enhance muscular performance and induce the 
transcription factor PGC1 α  [9,10]. Subsequently, PGC1 α 
regulates the expression of kynurenine aminotransferase (KAT) 
gene, an important KP enzyme in skeletal muscle [9]. Further, 
this combination of physical endurance exercise and fluoxetine 
treatment also decreases inflammation and, through this 
mechanism, decreases gene expression for others KP enzymes as 
tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 
(IDO), and kynurenine 3-monooxygenase (KMO), increases the 
tryptophan consumption toward serotonin synthesis [11].

On the other hand, some recent studies confirmed that fluoxetine 
treatment ameliorates skeletal muscle oxidative capacity by 
enhancing mitochondrial enzyme. Activity [12]. A body of 
evidence suggests that PGC1 α was modified in both fiber-types 
of skeletal muscle by a long-term endurance exercise [13]. Among 
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KP metabolites, the kynurenic acid (KYNA) has protective, while 
others have toxic roles [14,15]. Kynurenine and KYNA can Cross 
into muscle fibers, but the majority is intramuscularly produced. 
The amounts of KYN and KYNA locally produced after an 
endurance exercise are nevertheless not known.

We therefore present a study on the mutual effects of fluoxetine, 
exercise and combination in plasma and soleus through the 
involvement of skeletal muscle KYN Pathway.

MATERIALS AND METHODS

Animals

Six-week old adult Balbc/j male mice were purchased from 
Janvier Labs (Le Genest Surl’Isle, France) weighing 21 g-25 g at 
the beginning of the study. They were randomly assigned as five 
mice per cage in a temperature (21 ± 1°C) controlled room with 
a 12 h light: 12 h dark cycle (lights on at 06:00 h). Food and water 
were provided ad libitum. The protocols involving animals and 
their care were conducted in conformity with the institutional 
guidelines that comply with national and international laws and 
policies (Council directive #87-848, October 19, 1987, Ministère 
de l’Agriculture et de la Forêt, Service Vétérinaire dela Santé et 
de la Protection Animale, permissions # 92-373 to FC) and in 
compliance with protocols approved by the Institutional Animal 
Care and Use Committee (CEE26 authorization #6195).

Drugs

Fluoxetine hydrochloride (18 mg/kg per day in the drinking 
water for six weeks) was purchased from Anawa Trading (Zurich, 
Switzerland).

Treadmill-running

Exercise training consisted of running on a 6-lane rodent motor-
driven treadmill (Ugo Basile®, Gemonio, Italy) equipped with 
UB X-Pad software version 1.0.01 that automatically recorded the 
distance, velocity, and time of animal running.

To reduce their stress, mice were faced with a treadmill for 
one-week adaptation (20 min/day, 15 m/min). To determinate 
individual maximal aerobic running speed, treadmill band speed 
was increased from 6 m/min by 0.03 m/s every 2 min until 
their exhaustion. Subsequently, mice underwent incremental 
exercise training for six weeks. Mice were divided into four 
groups, no exercise-saline, no exercise-fluoxetine, exercise-saline, 
and exercise-fluoxetine (n=11-12 animals per group). Bodyweight 
was assessed at the beginning of each week during the six weeks. 
After the last physical performance determination, animals were 
sacrificed by cervical dislocation before tissue harvest. Soleus 
muscle from both legs was dissected and mass was measured just 
after sampling. Tissues were frozen in liquid nitrogen and stored 
with plasma at -800°C until further analysis.

 Kynurenine pathway evaluation:

KP-related metabolites evaluation by LC-MS/MS: To 190 μL of 
plasma or calibrator or controls, 10 μL of each internal standard 
(IS) was added. Samples were mixed for about 10 s, and 700 μL of 
methanol, 79 g/L zinc sulphate in water (80/20, v/v) containing 
0.05% trifluoroacetic acid were added. After mixing, the samples 
were placed at 4°C for 15 min and centrifuged at 10,000 g for 15 
min at 4°C. Seven hundred microliters of clear supernatant were 
transferred into a new tube and dried under a nitrogen stream. 
Residues were reconstituted with 30 μL of water containing 0.08% 
ASC. All pipetting was manual. LC–MS/MS was performed 
using a dionex ultimate 3000 liquid chromatography instrument 
(ThermoFisher, Waltham, USA) connected to a Sciex API 4000 
tandem mass spectrometer (SCIEX, Ontario, Canada). Data 
acquisitions were made using SCIEX Analyst software (v.1.5.2). 
All compounds were separated over a Kinetex C18 column (100 
mm × 2.1 mm i.d. column; 5 μM particle size) with a 2.1 mm 
C18 guard column, both obtained from Phenomenex (Torrance, 
USA). The mobile phases consisted of water containing 0.1% 
formic acid (FA) (mobile phase A) and acetonitrile (ACN) 
containing 0.1% FA (mobile phase B) (Figures 1A and 1B).

Figure 1: Kynurenine (KYN) to tryptophan (TRP) ratios of 
concentrations determined by LCMS/MS in plasma (A) or 
homogenates of soleus muscle (B). Male Balbc/j mice were treated 
by fluoxetine (18 mg/kg/day, p.o., 6 weeks) or saline and either 
submitted to six weeks treadmill training exercise (exercise group) or 
untrained (no exercise group)(n=11–12 mice per group). Data were 
presented as mean ± SEM and the statistical significance level was set 
at p<0.05.Note: ( ) Saline, ( ) Fluoxetine.
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The compounds were separated using a linear gradient that 
started at A/B=100/0 and ended at 7 min with A/ B=72/28. The 
mobile phase was then held at A/B =0/100 for 3 min and the 
LC column re equilibrated with A/B=100/0 for 5 min. To avoid 
detector saturation with tryptophan, we used a split between LC 
and MS/MS that began at 4.15 min and ended at 6.3 min. As 
only 4% of the flow arrived at MS/MS during the split, we also 
used a column shunt starting at 4.75 min for 1.6 min at a flow 
rate of 2.5 mL/min (schematic representation in Figure 2A).

Mass Spectrometry detection was carried out in positive ion 
mode using electrospray ionization (ESI) source. The MS/MS 
parameters were optimized for each single standard metabolite 
by infusing each single solution (2 μg/mL) into mobile phase 
flow with a syringe pump (Hamilton Company, Reno, USA). 
The main metabolites (Trp, KYN and KYNA) were analyzed in 
positive ESI mode with several multiple reaction monitoring 
(MRM) scans used as quantifier or qualifier.

Gene-related gene evaluation by Real-time qPCR assay: Total 
RNA was isolated from cells or tissues (gastrocnemius, soleus, 
hippocampus and cortex) were extracted using Qiagen RNAeasy 
Mini Kit (Qiagen, USA) and following all steps recommended 
by the manufacturer. At the last step, RNA was re-suspended in 
15 μl of RNAse-free water to allow for a high final concentration 
of RNA. RNA concentrations and quality were determined 
using a NanoDrop spectrophotometer (NanoDrop technologies, 
Wilmington, USA) and a RNA LabChip® 6000 Nano kit (Agilent 
Technologies, Santa Clara, USA). RNA quality cut off value was 
OD ratio 260/230 > 1.6 nm and OD ratio 260/280 ratio>1.7 
nm, and RIN (RNA Integrity Number)>7.0. 0.5 μg of total 
RNA was then reverse transcribed and converted into double-
stranded cDNA using the qScript cDNA Synthesis Kit (Quanta 
Biosciences, Gaithersburg, Maryland).

In brief, small PCR products (70–160 base-pairs) were amplified 
in quadruplets on a BioRad real-time PCR machine (CFX-96), 

followed by 35 cycles (15 s at 95°C, 10 s at 59°C and 10 seat 
72°C)). The cDNA was amplified in 20 μl as involved by the
reactions (3 mm MgCl2, 200 nM dNTPs, 200 nM primers, 0.5 
unit Platinum Taq DNA polymerase (Invitrogen, Carlsbad, CA, 
USA). Primers were designed using Primer 3 Plus.

Results were calculated as the geometric mean of relative 
intensities compared to three internal controls (ACTIN, GAPDH 
and PPIG). Protocols were in accordance with the MIQE 
guidelines. KAT1, KAT2, PGC1



1 and NRF1 were studied in 
all tissues.

Statistical analyses

Prism computer software (GraphPad, San Diego, USA) was 
used to conduct statistical analysis. Two-way analysis of variance 
(ANOVA) followed by post-hoc Tukey’s multiple comparison 
tests were used to compare test groups to control groups: no 
exercise-saline, no exercise-fluoxetine, exercise-saline and exercise-

fluoxetine. Data were presented as mean ± S.E.M. and the 
statistical significance level was set at p<0.05.

RESULTS

Metabolites evaluation

Tryptophan (TRP) and two KP metabolites, kynurenine (KYN) 
and kynurenic acid (KYNA), were assayed by LC-MS/MS in 
plasma and homogenates of soleus muscle. To simplify the results 
and prevent from further figures, data were presented as ratio to 
their respective precursor.

The plasma and soleus KYN/TRP ratios (Figures 1A and 1B) were 
significantly decreased after a physical exercise in the fluoxetine-
treated group, (-45.7%, p<0.01, -55.2%, p<0.05, respectively). 
However, ratios were insignificantly decreased by physical exercise 
in saline-injected mice. The fluoxetine treatment vs saline did not 
significantly modify the KYN/TRP ratios in trained or untrained 
groups.

The KYNA/KYN ratios (Figures 2A and 2B) were significantly 
increased after a physical exercise in the fluoxetine-treated group, 
when compared to the sedentary treated or untreated groups 
(+37.0%, p<0.01, +132.0%, p<0.05, respectively). Ratios were also 
significantly increased after an exercise in saline-treated group 
(+29.7%, p<0.05, + 136.2%, p<0.05, respectively).

Figure 2: Kynurenic acid (KYNA) to kynurenine (KYN) ratios 
of concentrations determined by LCMS/MS in plasma (A) or 
homogenates of soleus muscle (B). Male Balbc/j mice were treated 
by fluoxetine (18 mg/kg/day, p.o., 6 weeks) or saline and either 
submitted to six weeks treadmill training exercise (exercise group) or 
untrained (no exercise group)(n=11–12 mice per group). Data were 
presented as mean ± SEM and the statistical significance level was set 
at p < 0.05.Note: ( ) Saline, ( ) Fluoxetine.

α

using universal PCR conditions (65°C–59°C touch  adown, 
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was decreased in trained animals (- 64.4%, p<0.01). Combination 
of exercise and fluoxetine consumption insignificantly increased 
expression. 

Concerning NRF1 gene expression, fluoxetine consumption 
significantly increased its expression only in untrained animals 
(+147%, p<0.001). Exercise with a saline or a fluoxetine treatment 
very significantly increased NRF1 gene expression (+528% and 
+259%, p<0.001) [16-23].

DISCUSSION AND CONCLUSION

All these results confirmed the role of fluoxetine in skeletal 
muscle remodeling after physical exercise. To validate, testing the 
effects of other SSRI as escitalopram in skeletal muscles, with 
other methods using cell specific deletion of 5-HT and TRP 
hydroxylase1 receptors should be used. Whereas, this work is 
preliminarily enough, and many challenges were not predicted, 
a new project is strongly suggested to highlight the related 
factors and the real mechanism involved behind these observed 
consequences.

The present work revealed that the chronic administration of SSRI 
type antidepressant, fluoxetine, associated with exercise was able 
to very significantly convert the TRP metabolism toward 5-HT 
biosynthesis and decrease the pathway toward KYN production 
in plasma and soleus. The exercise alone had similar effects on 
TRP metabolismbut it was not significant. This suggested that 
the fluoxetine-induced effects on TRP metabolism were not as 
predominant as physical exercise. These exercise effects were also 
previously observed by Metcalfe et al. (2018) in human studies 
after a 12 weeks’ exercise. Falabregues et al. didn’t observe 5-HT 
modification in peripheral 5-HT–deficient (Tph1KO) mice versus 
wild-type mice after 10 weeks of endurance training but data 
before exercise were not shown. We can conclude that association 
of exercise with fluoxetine consumption had a synergistic effect 
to increase 5-HT peripheral generation.

The second observation was a significant increase of the protector 
KYNA production in muscle and plasma after the association of 
fluoxetine and physical exercise but not by fluoxetine alone. It 
is well concluded that these peripheral effects were significantly 
induced by physical exercise, which confirm previous research 
works in mice and in human . KYNA is antagonist of NMDA 
receptor and cannot pass through blood brain barrier. Thus it 
is well demonstrated that association of training and fluoxetine 
had significant synergistic effects in order to induce peripheral 
variation of TRP metabolism.

Association of fluoxetine and exercise was able to increase the 
gene expression of only KAT2 in soleus muscle. Exercise alone 
and fluoxetine alone increased the expression of KAT 1 and 
2, PGC1a and NRF1 genes in muscle. Muscle adaptation to 
exercise and the impact of external context is multifactorial, and 
the molecular basis of regulation is not completely explained. As 
previously cited researchers, the effects of endurance training 
and fluoxetine chronic consumption is linked to an increase 

Gene expression evaluation

The KAT1, KAT2 (Figures 3A and 3B) and PGC1 α , NRF1 
(Figures 4A and 4B) gene expressions were measured in soleus 
muscle. Exercise in saline-treated animals significantly induced 
significant changes in both gene expressions (p<0.001). We 
observed significantly increased KAT2 gene expression levels after 
fluoxetine treatment in untrained or trained animals compared 
to saline-treated group (+581%, p<0.001, +57.7%, p<0.01, 
respectively). Combination had synergistic effect (+1240%, 
p<0.001).

Concerning PGC1 α gene expression, fluoxetine consumption 
increased its expression in untrained animals (+ 16.0%, p<0.01) but 

Figure 3: Gene expression levels of KAT 1 (A) and KAT 2 (B) in 
homogenates of soleus after 6 weeks treadmill exercise and fluoxetine 
treatment: mice were treated by fluoxetine (18 mg/kg/day, p.o., 6 
weeks) or saline and submitted either to six weeks treadmill training 
exercise (exercise group) or untrained (no exercise group). * shows the 
effect of exercise and # shows the effect of fluoxetine treatment. Data 
were presented as mean ± SEM and the statistical significance level 
was set at p < 0.05.Note: ( ) Saline, ( ) Fluoxetine.

Figure 4: Gene expression levels of, A: Peroxisome proliferator-
activated receptor-gamma coactivator-1 (PGC1α) and B: D- nuclear 
respiratory factor 1 (NRF1) in homogenates of soleus after 6 weeks 
treadmill exercise and fluoxetine treatment: mice were treated by 
fluoxetine (18 mg/kg/day, p.o., 6 weeks) or saline and submitted 
either to six weeks treadmill training exercise (exercise group) or 
untrained (no exercise group). * shows the effect of exercise and # 
shows the effect of fluoxetine treatment. Data were presented as 
mean ± SEM and the statistical significance level was set at p < 0.05.
Note: ( ) Saline, ( ) Fluoxetine.
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Am J Physiol Cell Physiol. 2016.

18. Isung J, Granqvist M, Trepci A, Huang J, Schwieler L, Kierkegaard M, 
et al. Differential effects on blood and cerebrospinal fluid immune 
protein markers and kynurenine pathway metabolites from aerobic 
physical exercise in healthy subjects. Sci Rep. 2021;11(1):1-3.

19. Fanibunda SE, Deb S, Maniyadath B, Tiwari P, Ghai U, Gupta S, 
et al. Serotonin regulates mitochondrial biogenesis and function in 
rodent cortical neurons via the 5-HT2A receptor and SIRT1–PGC-
1α axis. Proc Natl Acad Sci U S A. 2019;116(22):11028-11037.

of PGC-1 α expression in the soleus muscle. PGC-1 α is a 
significant regulator that induces mitochondrial biogenesis and 
a fiber switch to modify muscle fiber types in the skeletal muscle. 
PGC-1 α controls many aspects of angiogenic improvement and 
oxidative metabolism, including respiration and mitochondrial 
biogenesis through co-activation and enhancing the expression 
and activity of several transcription factors, including NRF1. 
They are potent stimulators of the expression of nuclear genes 
required for mitochondrial respiratory function. An increased 
expression of total PGC-1 α was described15 in soleus muscle of 
mice on a high-fat diet, although, following a significant increase 
of PGC-1 α -b and PGC-1 α -c expressions through the 5-HT2a 
and 5-HT7 signaling pathways. It was also suggested that a 5-HT2 
agonist led to an increase of PGC-1 α promoter activity, and it 
supports PGC-1 α expression promoter activity by serotonin in 
skeletal muscles. Moreover, evidence suggested that the skeletal 
muscle functional serotonin 5-HT2a receptor was expressed in rat 
myoblasts, activating intracellular phosphorylation on the plasma 
membrane and at the level of T-tubules in contracting myotubes. 
The binding of serotonin to its receptor increases the expression 
of genes involved in myogenic differentiation. Unexpectedly, 
the 5-HT2A receptor can activate another signaling pathway; 
it triggers rapid and transient phosphorylation of Jak2 kinase 
tyrosine in response to serotonin. The self-phosphorylation 
of Jak2 is followed by the phosphorylation of the tyrosine of 
STAT3 (signal transducers and transcription activators) and its 
translocation into the nucleus. No difference in the abundance 
of 5-HT2a was observed between red muscle and white muscle, 
suggesting that receptor expression does not correlate with the 
metabolic or contractile properties of the muscle fiber. Moreover, 
aerobic training can also modulate sensitivity of 5-HT receptors.
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