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Short Communication
Cancer-causing mutations are caused by genotoxic agents from

various sources such as chemicals in environmental pollutants,
cigarette smoke, excessive consumption of alcohol, and excessive
sunlight exposure as well as exposure to ionizing radiations such as X-
rays, γ-rays, alpha particles, to name a few [1]. In addition to this,
cancer chemotherapy and radiation therapy are a major source of
DNA damage and hence a possible cause of cancer or cancer relapse.
The occurrence of mutations following genotoxic insults is often
attributed to the faulty or futile repair of damaged lesions.

Innumerable studies pertaining to the genesis of cancer have
focused on mutated genes. However, there are very few reports which
have studied mechanism(s) of tumor induction in the perspective of
the DNA-damage caused by genotoxic agents. Paules group showed
that ''cancer-predisposition programs'' were induced in lymphocytes
following DNA damage [2]. Furthermore, Fung and colleagues
hypothesized that DNA damage induced following apoptosis induction
remains unrepaired and possibly results in oncogenic transformation
[3]. Yang et al. through their experiments exhibited the ability of heavy
ions to induce DNA damage leading to transformation, however the
mechanism remained an open question [4].

With regards to in vivo models, although DNA-damaging agents
such as N-methyl-N-nitrosourea (MNU) [5] or 7,12-
dimethylbenz[a]anthracene (DMBA) [6] have been widely used to
induce mammary tumors in rodent models, the exact mechanism of
tumor induction remains elusive. MNU induced rat mammary tumor
is one of the widely used model to successfully screen therapeutics as
well as to answer intriguing questions related to tumor progression.
However, the mechanism of tumor induction by MNU is debateable
The initial hypothesis was that MNU induces a point mutation at the
12th codon of H-ras gene [7]. The frequency of the H-ras mutations
was also showed to reduce upon increasing doses of MNU albeit
increase in tumor yield [8]. Additionally, it was shown that not all the
MNU-induced mammary tumors harbor this mutation [9-14].
Furthermore, Cha et al. [10] and Maffini et al. [11] also demonstrated
that H-ras mutations were also present in the untreated animals.
Besides these, Maffinin et al. also showed that stroma was the primary
target of MNU and the treatment of stroma alone was sufficient to
induce tumor formation [11]. This report also claimed that tumor
formation was independent of the H-ras mutation initially identified
by Zarbl et al. [7]

Given the extent of exposure to DNA damaging agents in everyday
life, and lack of knowledge about the precise mechanism of
tumorigenesis following DNA damage; the study of the mechanism of
DNA damage induced transformation becomes imperative. In a recent
study, using the 3-dimensional breast acinar model, we demonstrated
that alkylation damage induced cellular transformation, which was

mediated via the activation of DNA-PK, a protein involved in the DNA
repair process [15]. DNA-PK has been demonstrated in various studies
to have diverse functions [16]. The significant role played by this
complex is in the NHEJ pathway of DNA damage response (DDR)
following the formation of DSBs. DNA-PK is a holoenzyme made up of
two regulatory subunits Ku70 and Ku80 as well as a catalytic subunit,
DNA-PKcs, responsible for the kinase activity [17,18]. Known as a
critical player in safeguarding the genome, DNA-PK has been reported
to regulate the entry into mitosis depending on the presence or
absence of DNA damage, thus contributing to genomic stability [19].
Supporting its role as a guardian of the genome, Morozov et al.,
reported that inhibition of DNA-PKcs resulted in increased sensitivity
to genotoxic agents, whereas somatic mutations in DNA-PKcs, the
catalytic subunit of DNA-PK, contributes to genomic instability by
interfering with repair of double strand breaks [20]. Furthermore,
inhibition of the catalytic subunit was reported to cause chromosome
mis-alignment as well as interfere with spindle formation [21]. DNA-
PK has also been shown to play a vital role in cancer cells developing
radio-resistance eventually resulting in the cells exposed to
fractionated-radiation for a long period of time repairing any DNA
damage incurred, faster than the unexposed cells [22]. Taken together,
these studies suggest the protective role played by DNA-PK in
safeguarding the genome.

On the contrary, the interaction of DNA-PK with Snail1 is known to
promote chemo-resistance as well as genomic instability. [23,24].
Besides its well-established role in DDR, DNA-PK has been implicated
to play a role in various cancers. However, the exact role of DNA-PK in
cancer is ambiguous. PRKDC, the gene encoding for DNA-PKcs, has
been found to have low expression in lung cancers [25], ovarian
cancers [26] as well as gastric cancer [27]. On the other hand, a higher
expression has been reported in hepatocellular carcinoma [28],
prostate cancer [29] and melanomas [30]. Recent reports suggest over-
expression of DNA-PKcs regulates metastasis of prostate cancer cells
through transcriptional regulation [29]. Furthermore, DNA-PK
inhibition was found to inhibit the formation of primary melanoma,
delayed metastasis to lymph nodes as well as inhibited secretion of
MMPs [30]. However, its role in breast cancer remains elusive. Cimino
et al. identified PRKDC as one of the genes being upregulated in breast
cancer patients which were also found to be associated with reduced
survival [31]. This result was in concordance with the data collected by
van de Vijver et al. [32] and Sotiriou et al. [33]. Our study illustrates for
the first time the role of DNA-PK in breast tumorigenesis [15]. In our
study, MNU was used to induce DNA-damage, which in turn resulted
in activation of DNA-PKcs which eventually resulted in transformation
of non-tumorigenic breast epithelial cells. DNA-PKcs, which gets
activated following DNA-Damage primarily to recruit the repair
machinery, was found to be able to alter various characteristics of the
cell. Our study also suggested that DNA-damage induced
phosphorylation of DNA-PKcs resulted in its constitutive activation,
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since inhibition of DNA-PK at a later time point was able to reverse the
transformation phenotypes induced. The autophosphorylation
tendency of DNA-PK can explain this speculation. In addition to this,
loss of basal polarity has been found to reduce the efficiency of repair
of DSBs [34] which in turn would either result in constitutive
activation of DNA-PK or result in accumulation of chromosomal
aberration when these cells enter cell-cycle and thus lead to
carcinogenesis.

One of the striking features in cells that were exposed to MNU was
their altered Golgi morphology. The intracellular trafficking function
of such disrupted Golgi was found to be impaired. This Golgi
phenotype was in corroboration with the report by Farber-Katz et al.
[35], wherein the dispersed Golgi phenotype was attributed to the
activation of DNA-PK. The dispersal was attributed to the
phosphorylation of GOLPH3 induced by activated DNA-PK. Epithelial
cells are characterised by their ability to polarize. Investigation of the
effect of methylation damage in the establishment of polarity, we
observed disruption of apical as well as basolateral polarity.
Accumulation of laminin V, as well as integrin-α3 in the cytoplasm
coupled with alteration of composition of the cell membranes
observed, can be attributed to the impaired trafficking. Laminin V
phenotype observed has also been referred in literature to be indicative
of invasive phenotype. Invasive cells are known to break down the
basement membrane to invade the nearby tissue and disseminate to
distant organs [36]. Apart from this, down-regulation of this α6-
integrin subunit has been observed in cells metastasizing to the pleural
cavity and parenchyma [37]. Loss of laminin V and α6-integrin from
the basal region in acinar structures, enhanced secretion of MMP-9
and ability to cleave collagen observed in our study corroborated with
this observation and suggested the induction of invasiveness in cells
following DNA damage. Epithelial–mesenchymal transition (EMT)
which is one of the initial processes in invasion was also found to be
induced in the MNU-treated cells. These cells also gained the ability to
survive under anchorage independent conditions, which is considered
the most stringent criteria to identify transformed cells. The different
phenotypes namely EMT, invasion and anchorage independence
besides altered Golgi phenotype, induced by DNA damage was
reversed following inhibition of DNA-PK, thus confirming the central
role played by DNA-PK in methylation damage induced
transformation. The interaction between Snail1 and DNA-PK has been
reported to result in increased activity of Snail1 [24]. Increased Snail1
activity results in EMT, which confers to the results of our study where
upregulation of Snail1 was observed. However, surprisingly DNA-PK
inhibition was unable to restore the impaired intracellular trafficking
suggesting that DNA-PK induced transformation was independent of
its effect on Golgi trafficking.

SJ Field and group in their study have illustrated that DNA damage
by various agents including radiation, induced dispersal of Golgi [35].
Further NEU and MNU result in different kind of mutations where
NEU is known to induce random mutations [38] while MNU induces
mutations at specific sites defined by a particular consensus sequence
[39]. The ability of NEU to induce transformation [40] with
phenotypes similar to that induced by MNU indicates that the effect
caused by methylation damage is due to DNA damage induced in
general and not specific to the chemical used. Given that DNA damage
is a generalized effect, activation of alternate pathways cannot be
negated. However, reversal of phenotypes induced following exposure
to MNU by DNA-PK inhibition suggests the central and novel role of
DNA-PK in breast tumorigenesis. Taken together, the study highlights

the vast range of effects which can be induced in cells by DNA-damage
via activation of DNA-PK.

Figure 1: Schematic showing the mechanism of MNU-induced
transformation. DNA-PK, one of the key proteins involved in DDR
pathway, repairs DNA damage caused by various environmental
factors. However, at the cellular level, MNU induced activation of
DNA-PKcs, not only altered Golgi morphology and impaired
intracellular trafficking to the plasma membrane but also resulted in
transformation of breast epithelial cells.

Conclusion
DNA damage, if left unrepaired can lead to nuclear effects which

might result in genomic instability. This paradigm of effect of DNA
damage has been well characterised. However, little is known till date,
about the effects of DNA damage on cell apart from the nucleus. Our
study highlights the consequence of DNA damage and provides
mechanistic insights into the process. It illustrates the novel role played
by DNA-PK in the process of transformation. It demonstrates the irony
that the surveillance mechanism (activation of DNA-PK) in the
process of safeguarding the genome, itself triggers the process of
transformation. This fact can be exploited to improve cancer therapy.
Small molecule inhibitors of DNA-PK have been developed with the
aim to improve chemo as well as radio sensitivity and a few of these
compounds have entered clinical trials [41]. Use of an inhibitor to
DNA-PK as an adjuvant to chemotherapy can prove to be beneficial
not only to improve sensitivity to cancer therapeutics but also prevent
such inadvertent effects. Nevertheless, there could be multiple
pathways which may synergistically contribute to the transformation
apart from the mechanism summarized in the Figure 1. This calls for
further interrogation into the process and explore the other pathways
to aid in identifying the various molecular players. The information
thus gathered can then be used to design novel therapeutic strategies
or modify the present strategies. The model established in our study
can be further exploited to study alternate pathways as well as used for
therapeutics screening. In addition to this, such a model can also be
used to understand how early transformation occurs and identify the
initial set of gene(s) that get deregulated in the process of
transformation. Understanding this phenomena and recognition of key
candidate genes as biomarkers could further help to design novel or
modify available therapeutic strategies.
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