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Mammalian brain consists of two major types of cells, the 
neurons and glia. Mature neurons are essentially post-mitotic and 
do not proliferate whereas some glial cells can undergo replication 
especially as a response to stress or damage [1,2]. Nervous system is 
one of the earliest systems to develop and differentiate in almost all 
the species. Therefore, literally, neurons in the brain are one of the 
oldest cell populations in the organism. Neurons are also one of the 
most metabolically active cells and gene expression is two- to three-
fold higher in neurons than in any other cell [3]. These non-dividing, 
metabolically hyperactive cells are, therefore, vulnerable to risks that 
involve DNA damage. 

DNA repair pathways in brain have been studied extensively over 
the last two decades (reviews [4,5]). In mammals, DNA double-strand 
break (DSB) repair uses two mechanisms, homologous recombination 
(HR) and non-homologous DNA end joining (NHEJ). NHEJ is the 
predominant double-stranded DNA repair pathway in mammalian 
cells [6]. NHEJ is among the most recently defined repair pathways 
with substantial importance in cancer, aging and immune system 
development. Compared to the HR, NHEJ is considered error-prone 
and imprecise since it acts at the DNA break sites to restore the 
chromosomal structural integrity which could come at the expense 
of one or few nucleotides. Over time, as in aging, these small errors 
can accumulate resulting in genome instability leading to cellular 
dysfunction or death. Interestingly, it has been reported that 10% 
of p53 mutations in human cancers could be attributed to deletions 
arising from NHEJ sites [7].

NHEJ is also the predominant form of double-stranded DNA 
repair pathway in post-mitotic neurons [8]. DNA-dependent protein 
kinase, a complex of the DNA-dependent protein kinase catalytic 
subunit (DNA-PKcs) and a heterodimer of Ku70 and Ku80, plays 
a principal role in NHEJ [9]. NHEJ is critical in the nervous system 
development since mice deficient in DNA Ligase IV, XRCC4, Ku70 
and Ku 80 that are participants in the NHEJ event, show massive 
apoptosis in post-mitotic neurons [4,10]. When a DSB occurs, the Ku 
heterodimer (Ku80/Ku70) binds to the broken ends first using Ku80 
and then recruits the DNA-PKcs which is activated upon binding to 
Artemis nuclease and the repair process is completed by XRCC4-DNA 
ligase IV [11,12].   

Loss of NHEJ activity in the developing brain can be prenatally 
lethal and in adults, can lead to neurodegenerative diseases [4,13,14]. 
The type of DNA damage most likely occurring in neurons is oxidative 
damage. High metabolic rate of neurons can generate excessive oxygen 
radicals and neurodegenerative diseases like Alzheimer’s disease (AD) 
have been linked to oxidative stress (reviews [4,15]). The other aspect 
contributing to neuronal DNA damage is linked to neurons re-entering 
cell cycle [16,17]. When post-mitotic neurons try to re-enter the cell 
cycle, the very attempt to transcribe a subset of cell cycle-related genes 
that have not been transcribed for years in a mature neuron’s lifetime 
may accumulate damaged DNA that could trigger neuronal apoptosis 
[18]. In neurodegenerative diseases like AD, the types of DNA damages 
are likely induced by reactive oxygen species (ROS) [19]. With aging, 
NHEJ activity gradually decreases as the neurons become terminally 
differentiated. However, in mature rats, the NHEJ activity in the brain 

is comparable to the level observed in the testes [20]. When a declining 
activity in the nervous system matches with the normal activity in 
another tissue (testis), it is conceivable that NHEJ activity during 
nervous system development could, in fact, be robust. 

Once the neuron stops dividing, the need for DNA repair may be 
reduced and the necessity to maintain active NHEJ machinery may, 
as well, become obsolete. However, under oxidative stress or other 
endogenous or exogenous insults, when the neuronal DNA is damaged, 
due to a pre-existing reduced NHEJ activity, the neurons may undergo 
apoptosis or should they re-enter cell cycle, the damaged DNA could 
replicate thus compounding genomic aberration. Thus, in aging, the 
brain could harbor post-mitotic neurons with reduced NHEJ potential, 
but if not challenged with an insult, the neuron could die a normal 
death; whereas in neurodegenerative diseases like AD, factors, such as 
ROS, could trigger DNA damage and lacking its repair, neurons could 
degenerate prematurely. Because of a fine line between neurons in a 
normal aging brain and neurons in distress because of disposition to 
the neurodegenerative diseases, the proteins and enzymes involved in 
the NHEJ are worthy candidates for investigation. 

DNA-PK plays a role in detecting DNA damage and triggering 
signaling pathways including programmed cell death [21].  Ku80-/- 
mice are defective in the NHEJ and telomere maintenance and show 
premature aging, but surprisingly no human disorder caused by Ku80 
deficiency or mutation has been reported [22,23]. Interestingly, Ku80 
and DNA-PKcs protein levels as well as Ku80’s DNA-binding ability are 
reduced following severe ischemic injury that causes extensive neuronal 
death in rabbit [24]. Furthermore, although not significantly different 
from the age-matched controls, Ku-DNA binding is reduced in extracts 
of post-mortem AD mid-frontal cortex, which could be attributed to 
reduced levels of Ku subunits and DNA-PKcs [25]. However, another 
report from the same laboratory demonstrated that NHEJ is reduced in 
cortical extracts from brains of AD versus normal subjects and DNA-
PKcs level was significantly lower in the AD brain extracts [24].

In order to make sense of the complexity of AD, a ‘two-hit 
hypothesis’ for AD development has been reported, which states that 
the first hit makes neurons vulnerable and the second hit triggers 
the neurodegenerative process [26]. The first hit may constitute 
abnormalities when neurons try to re-enter cell cycle or oxidative 
stress, which, if persistent, can create a pro-oxidant environment 
as encountered in pre-AD and AD cases. In this environment, 
proteins highly sensitive to redox modulation, including p53, can 
be compromised [27]. A number of postmortem studies suggest an 
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involvement of p53 in AD and high levels of p53 in certain neurons in 
postmortem samples from AD patients have been reported (review [28]). 
DNA-PK activates p53 by phosphorylating the amino-terminal site 
[29] and p53 can induce Bax, a pro-apoptotic protein that translocates
to the mitochondria and initiates the intrinsic death pathway [30].
Regulation of Bax-mediated neuronal death also reportedly involves
Ku70 phosphorylation by DNA-PK [31]. In this regard, reduction in
DNA-PKcs levels in AD brains does not seem to fit in to the concept of
it being the trigger for p53-mediated neurodegeneration.

Considered indispensable for V (D) J recombination in immune 
response cells utilizing NHEJ, DNA-PK is believed to have little or no 
effect in p53-dependent cell cycle arrest. In contrast, there are reports 
linking p53 phosphorylation by DNA-PK to cellular death machinery 
(review [32]). DNA-PK is also involved in regulating the activities of 
RNA Polymerase I and II via phosphorylation (review [32]). Given 
these important substrates of DNA-PK that are critical players in cell 
death and gene transcription, it is difficult to pinpoint the exact role(s) 
of DNA-PKcs and its cofactor (Ku80/Ku70) in AD. Likewise, it would 
be simplistic to directly link reduced levels of DNA-PK subunits and 
consequently less proficient NHEJ in AD brains to neurodegeneration. 
On the other hand, it is attractive to speculate that DNA damage (e.g., 
induced by ROS downstream of Aβ) in neurons with reduced NHEJ 
activity, triggering them to re-enter cell cycle unsuccessfully, could lead 
to the accumulation of excessive genomic damage eventually causing 
neuron death. In either pathway, NHEJ being the process involved, 
the importance of DNA-PΚcs/Κυ complex in the development of 
neurodegenerative pathology may be considerable. The reduced levels 
of DNA-PΚcs and Ku80/Ku70 subunits in postmortem AD brains may 
be perceived as upstream events of neuron loss in AD, although further 
studies are warranted to differentiate between cause and consequence.
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