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Abstract

Cancer linked DNA hypo-methylation and hyper-methylation are present throughout the human genome. The
hyper-methylation facilitates cancer progress by repressing the tumor suppressor gene. Hypo-methylation
contribution towards cancer has not yet been clear. Recent studies of tissue specific methylation have suggested
that DNA hypo-methylation aid tumor formation by many pathways. Loss of DNA methylation associated with cancer
may alter transcription. In addition, DNA hypo-methylation might affect promoter usage production of intra-genic
non-coding RNA transcripts, co-transcriptional splicing and initiation and elongation of transcription. Studies of hemi
methylation of DNA in cancerous cells as well as normal tissues suggest that active de-methylation can explain
cancer associated DNA hypo-methylation. New studies that genomic 5-hydroxymethylcytosine is intermediate in
DNA de-methylation exhibits cancer associated losses. It suggests that both decreased hydroxyl-methylation and
methylation of DNA play important role in carcinogenesis.
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Introduction
Almost all cancer types depict both hyper-methylation and hypo-

methylation. Hypo-methylation accounts for tissue specificity of DNA
methylation [1]. Hypo-methylation and hyper-methylation of genome
associated with cancer are usually independent of each other [2,3]. But
recent studies show that cancer specific in DNA methylation are hyper-
methylation of unique regions of gene and hypo-methylation of DNA
repeats albeit with many notable exceptions [4-9] (Figure 1).

Deep sequencing of genome and recent whole genome analysis of
the cancer methylome shows that there is much more role of DNA
hypo-methylation and hyper-methylation in cancer. Although there is
difference of frequency with which sequence undergo hypo or hyper-
methylation [10-15]. This article reviews genome and chromatin
epigenetics in normal as well as cancerous tissues [16-26]. Recent
studies pay focus to role of epigenetic marks in the genes as well as
intergenic transcription and promoters. These evidences are likely to
be linked with cancer associated hypo-methylation. cancer-associated
DNA hypo-methylation probably favors oncogenesis as well as effect
normal gene expression like

• Alteration of intra nuclear positioning of chromatin
• Modulating the sequestration transcription factors at tandem DNA

repeats
• Activating a small number of endogenous retroviral elements

[27,28].

In addition, the little-studied area of DNA hemi-methylation in
cancer is discussed in this review.

DNA methylation subgroups according to tumor types.

Each tumor type has specific DNA methylation patter. For example,
characteristic pattern of high methylation CGIs was discovered in

colorectal cancer. It was defined as CpG island methylator phenotype
(Table 1).

Figure 1: DNA methylation.

Genomic Hypo-Methylation Profiles in Cancer
Recent modern genome analyses of DNA methylation suggested

that cancer specific portions methylomes consist of hypo-methylated
DNA repeats and hyper-methylated gene regions [1,5,29]. DNA
repeats are used as surrogate for methylation changes (usually losses of
5 mC) that are associated with certain tumor types [4,15,28,30,31].
Global DNA hypo-methylation analyses in human cancer by HPLC of
enzymatic DNA digest depicted these cancer DNA fractions had
almost same ratios of mole % 5 mC to those normal tissues of human
body. It was concluded that hypo-methylation was not confused to
DNA repeats. As cancer linked hypo-methylation of DNA occurs in
somewhat unique sequences in and around genes. It includes
metastasis associated genes [4,32,33].

Recent studies of DNA methylation in various normal and cancer
cells suggested much tissue specificity in genome of normal samples
and cancer linked DNA methylation [10,12,13,34-38]. Regions of
cancer linked changes in DNA methylation are found in clustered
short interspersed as well as in long blocks [5,35,37,39,40]. Recent
studies also proved cause and effect relationship between normal
tissues DNA hypo-methylation and increased transcription as well as
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cancer linked hypo-methylation and cancer associated increase in gene
expression [13,14,16,18,21,41-48].

Tumor type Project and country
identification

Number of methylomes

Breast BRCA-US 971

Ovary OV-US 572

Kidney KIRC-US 491

Head and neck THCA-US 488

Uterus UCEC-US 481

Lung LUAD-US 460

Colorectal COAD-US 414

Lung LUSC-US 410

Head and neck HNSC-US 407

Brain GBM-US 393

Skin SKCM-US 338

Stomach STAD-US 328

Brain LGG-US 293

Bladder BLCA-US 198

Prostate PRAD-US 196

Blood LAML-US 194

Pancreas PACA-AU 167

Blood CLLE-ES 159

Colorectal READ-US 150

Liver LIHC-US 149

Kidney KIRP-US 142

Cervix CESC-US 127

Brain PBCA-DE 115

Ovary OV-AU 93

Pancreas PAAD-US 72

Pancreas PAEN-AU 23

Table 1: International cancer genome consortium projects with
methylomes generated by Infinium bead chips.

A small % of annotated gene promoters overlap tissue specific T-
DMR or cancer specific C-DMR methylated DNA regions [42,49].
However most of T-DMR are not major type of vertebrate DNA
promoter which are part of CpG island. Among the genes with T-DMR
promoters some become activated upon self-induced demethylation
with 5-deoxyazacytidine [42].

Enhancers sometimes show relation between upregulation of
associated gene and demethylation in normal cells for example the
binding of FoxA1/FOXA1 [50]. This transcription regulatory factor
can open up DNA of inactivated enhancers [51-53].

In embryonic stem cells, local DNA methylation is associated with
pioneer factor to certain tissue specific non-CGI promoters. Pioneer
factors are implicated in different types of cancer [54]. Enhancers
regions are likely to face demethylation in tumors. However, loss of
DNA methylation from transcription regulatory region don’t cause
change in expression but it might facilitate [55].

DNA region enriched in hypo-methylation can increase expression
of some of the affected genes [10,35,56]. Such broad hypo-methylation
reflect high order chromatin structure.

Genomic Hypo-Methylation in Cancer within Gene
Bodies

Recent studies Shows involvement of intragenic epigenetic marks in
the regulation of normal gene expression. T-DMRS have been found in
many genes. Increased methylation in gene body or promoter flanking
region of certain genes with increased transcription [55,57,58]. In
addition to this, there is non-randomness between position of CpG
methylation within gene and external bodies i.e. exon intron [59,60].
These findings are consistent with relationship of DNA and chromatin
epigenetics [57,58,61,62]. The average DNA methylation is linked with
higher levels of transcription specially by its relation to nucleosome
position [63]. For example, in downstream of CpG poor promoters it
was observed that methylation of DNA antagonizes binding of Poly-
comb repressor complex. But in some genes lower expression was
related with increase in gene body methylation [64]. Recently, the
presence of 5-hydroxymethylcytosine (5 hmC) as the sixth naturally
programmed base in vertebrate DNA has been established [65]. DNA
methylation patterns in normal and cancer cells are shown in Figure 2.

Hypo-Methylation of DNA Repeats in Cancer
Global losses of DNA methylation with less increase in methylation

in portions of genome are of cancer [3,4]. In most cancers, major type
of methylation observed is that of tandem repeats [4,66,67]. Most type
of hypo-methylation is results of demethylation in caner stem cells.
Hypo-methylation of minor portion of tandem repeat may cause
cancer by induction of retro viral element transcription [28]. In
addition, it might affect the transcription of nearby genes [68,69].
LINE-1 is highly repeated gene sequence, hypo-methylation of LINE-1
and alu repeats have been observed in many types of cancer [70-74].
Similar types of repeats that are hypo-methylated has been observed in
Wilms tumor, ovarian cancer and adenocarcinoma [1,75]. Additional
types of tandem repeats are also involved in malignancies
[7,15,31,36,75-77]. Satellite DNA repeats sometimes show strongest
DNA hypo-methylation for all type of sequence analyzed [15,56].
Cancer associated DNA hypo-methylation depends on stage, grade
and tumor specimen [39,78]. This hypo-methylation has also been
observed in non-tumor cells present adjacent to tumor cells
[10,44,66,79-82]. Repeat DNA hypo-methylation serves as highly
informative marker [39,75,83,84].

DNA Hypo-Methylation and Germ Cells
Most of genes that are expressed in testis have very low ratio of

methylation in testis although same genes are highly methylated in
other somatic tissues [85]. In sperms DNA repeats show very low
methylation level compared with normal postnatal somatic tissues
[70,81,86-88].
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Figure 2: DNA methylation patterns in normal and cancer cells.
(A) In normal cells, most CpGs located outside of promoters in
gene bodies and intergenic regions are methylated (red circles),
whereas promoter-associated CpG islands are protected from DNA
methylation (white circles). (B) In cancer cells, a global or localized
loss of 5-methylcytosine occurs at gene bodies and intergenic
regions, whereas CpG-rich regions like promoters are usually
heavily methylated, which might lead to transcriptional repression.
Regions of intermediate CpG levels such as shores are associated
with tissue-specific methylation. Global loss (left plot) and focal
gain (right plot) of DNA methylation are depicted as tracks of the
University of California Santa Cruz genome browser [118] using
whole-genome bisulfite sequencing data for normal and cancer cell
lines. Tracks for CpG islands and selected histone modifications,
including H3K4me3, which is associated with transcriptionally
active promoters, and H3K4me1 and H3K27ac as markers for
enhancers, are illustrated below the gene track. Each color of the
histone tracks represents an individual ENCODE cell line. The
deleted in colon cancer gene (DCC) was taken as an exemplary
locus for which long-range hypo-methylation regions (horizontal
blue bars) are observed in the breast cancer cell line HCC1954 and
in the liver carcinoma cell line HepG2, but not in normal mammary
epithelial cells (HMEC) or the myofibroblast cell line IMR90. The
glutathione S- transferase P1 gene (GTSP1) represents an example
of promoter hyper-methylation (highlighted in red) in cancer cell
lines compared to normal cells. TSS, transcription start site.

In Seminomatous testicular germ cell tumors another interface
between germ line epigenome and cancer has been seen. Strong global
DNA hypo-methylation was observed. Seminomas show none of the
CGI hyper-methylation but it depicts DNA hypo-methylation [89].
Therefore, cancers can develop without gene region hyper-methylation
but with extreme overall genomic hypo-methylation.

Opposite Cancer-Linked Changes in DNA Methylation
in DNA Repeats: Hypo- and Hyper-Methylation

Opposite types of cancer linked methylation changes sometimes
occur in same DNA sequence as in case of NBL2(A Sequence repeat
near centromeres of acrocentric chromosome) [31]. NBL2 was hypo-
methylated at Hhal sites in 17% of ovarian carcinomas and hyper-
methylated in 70% of ovarian carcinomas [31]. Various postnatal
somatic tissues depict methylation at Hhal sites [76,77]. Few cancer
DNAs digest with Hhlal showed two fractions of NBL2 sequence one
with hyper-methylation and one with hypo-methylation. There is
evidence that hypo-methylation at NBL2 and hyper-methylation at
NBL2 predominates in cancerous cells that suggest site specificity of
methylation stats of CpG sites [6,90]. Thus, DNA can be made unstable
during carcinogenesis so that CpG sites that are close to each other
undergoes opposite changes in methylation

D4Z4 (a macro satellite located at sub telomeric region) also exhibit
strong hypo-methylation and hyper-methylation in the bulk of array
[7].

Maintenance of DNA Methylation Patterns Through
Hemi Methylated Intermediates

Methylation at each site is assumed to be governed by de novo
methylation (Figure 3) and maintenance methylation, these are
independent of each other. The maintenance of methylation has been
attributed to methyltransferase Dnm1. Different mechanism of de
novo and maintenance methylation has led to stoshastic models for
methylation inheritance.

Figure 3: DNA methylation pattern.

Insights into Cancer-Associated DNA Demethylation
from Studies of DNA Hemi Methylation

Introduction of hairpin sequencing has enabled the methylation
status more clearly site by site [90]. This sequencing allows analysis at
every CG pair in a given region on DNA strands. A caveat about this
method is that it can’t made a difference between 5 hmC and 5 mC. As
5 hmc is predominantly in gene regions while cancer cell lines have
low levels of 5 hmc [65,91,92] (Figure 4).

By sodium bisulfite based whole-methylome analysis using next-
generation sequencing NGS, it was observed that 90% of cytosine in
human HI embryonic stem cells and IMR 90 fetal lung fibroblasts [93].
While nearly all of the methyl cytosine detected in IMR90 were in the
CG context while considerable methylation was observed in non-CG
context in H1 stem cells. Methylation at mCHG sites in H1 ES was also
highly asymmetrical, with 98% of such sites observed to be methylated
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on only one strand. Non-CpG methylation was also found to be
significantly higher on the antisense strand of gene bodies, suggesting a
nonrandom bias in the observed asymmetry. Non-CpG methylation
disappeared upon differentiation of the H1 stem cells, but was restored
in differentiated cells induced to form pluripotent stem cells. These
findings suggest that asymmetrical methylation at non-CG
dinucleotide sites may contribute to maintenance of the pluripotent
state. They are reminiscent of the less frequent, hemi-methylated CG
dinucleotide sites that we and Laird et al. have seen in various DNA
repeats [6,94] or single-copy sequences [90] in normal or cancer
tissues.

Hemi Methylated CpG Dyads in Cancer
Our studies of hemi-methylated DNA in cancer suggest the

involvement of active demethylation in generating cancer linked hypo-
methylation. DNA methylation changes at NBL2 and Sat2 in ovarian
and Wilms tumor were studied [6,94]. In study of 13 CpGs by hairpin
genome sequencing it was revealed that there is greater variability in
methylation pattern in the cancer [94-149]. In the same way Analysis
of 14 CpG in NBL2 repeats revealed high degree of variation in
methylation pattern within each sample [6].

In a simulation study analyzing Sat2 and NBL2 it was found that
methylation patterns in carcinomas were best explained by a
mechanism that accounts for site to site correlation.

Figure 4: Similarities and differences in cancer-associated hypo-
and hyper-methylation of DNA.

Conclusions
We conclude that during carcinogenesis highly methylate DNA

sequence become partially de-methylated by active demethylation.
Active demethylation might start cancer associated demethylation and
a failure of maintenance methylation. The result could explain that
tumor progression is frequently linked to a progressive decline in
methylation.
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