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BACKGROUND

Genomes of individuals are said to be more than 99% similar. 
This small variation of less than 1% in the DNA accounts for vast 
amount of differences in endo-and-end phenotype and behavior 
of the person. Variations of single letters in nature, such as the 
letters A, T, G, C, N can be easily encoded, while numerical 
representation of variations of DNA of more than 1 letter need 
more complicated and logical methods. GWAS has been used 

for univariate methods of association of these variations to end 
phenotype until now [1]. A univariate method for association of 
the genomic variations with the end-or-endo-phenotype has been 
widely used through software tools such as snptest [2] and p-link 
[3]. Methods of multivariate GWAS where there are multiple 
phenotypes to associate with as dependent variables, which are 
claimed to perform better, have been suggested [4]. However, 
these associations still take one independent variable at a time for 
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genome wide association, therefore are less stringent resulting in 
spurious results. We see lately that overall contribution of these 
loci to heritability of complex diseases is often less than 10% [5]. 
A preprint of this paper was published in early 2021 at biorxiv [6]. 
As pointed out from McCLellan and King, Cell 2010 [7]

“To date, genome-wide association studies (GWAS) have 
published hundreds of common variants whose allele frequencies 
are statistically correlated with various illnesses and traits. 
However, the vast majority of such variants have no established 
biological relevance to disease or clinical utility for prognosis or 
treatment.”

“More generally, it is now clear that common risk variants fail to 
explain the vast majority of genetic heritability for any human dis-
ease, either individually or collectively Manolio [1].”

Models where more of the independent variables (here the 
genotypes) need to be incorporated as means of statistical 
association of the variants to the phenotype need to be built; 
addressed here by means of deploying deep learning and machine 
learning techniques. Of late, there have been several attempts to 
apply these methods using supervised and unsupervised learning 
techniques in medical science. However, until present, nobody 
has attempted to encode SVs in genomes larger than one base, 
here we call DIPs. As an example, deep learning has been deployed 
to predict gene expression from histone modifications [8]. A 
genome-wide assay of breast cancer by Denoising Autoencoders 
(DAs) employs a data-defined learning objective independent 
of known biology [9]. So by using this independent system the 
information is not captured for any advantage. Covolution 
neural network has been used for classifying various kinds of 
tumors [10]. Deep learning has been used for pathology image 
classification [11] and does not tap into the SV of the genome 
information for the purpose. Recurrent neural network without 
deploying SVs of the genome has been used for heart failure onset 
[12]. In Articles ‘The next era: deep learning’ and ‘Deep learning 
in drug discovery’[13,14] act as a review article for deep learning 
in pharmaceutical re-search and drug discovery-SVs of genome 
for any advantageous role are not mentioned. Brain disorders, 
such as Alzheimer’s disease, are evaluated using brain images 
using artificial intelligence techniques in article ‘Ensembles of 
deep learning’[15], yet heart related disorders use deep learning 
for mag-netic resonance information [16]. Article ‘Deep learning 
applications for’ [17] tries to make use of transcriptomics data 
along with deep learning for drug prediction and repositioning, 
again SVs of the genomic data are not mentioned. Recently 
in 2019, article ‘Machine learning SNP’[18], visits the idea of 
machine learning by SNP-only based approach, which fails to 
point out the impact of DIPs and its appropriate encoding to 
facilitate machine and deep learning. 

SVs ‘Variations in Genome Architecture’[19] in genomic data 
are obtained after comparing the patient’s DNA sequence with 
a reference sequence and finding matches and mismatches using 
tools, such as GenomeBreak [20,21]. In-corporation of DIPs or 
InDels to MLCSB cannot be avoided, as we are generating more 
and more sequences and the data is routinely being downstream 
analyzed for SVs. As DIPs essentially have all in-formation for 
CNVs, inversions, translocations and other SVs on genome, 

encoding them would also indirectly encode the other SVs. 
Article ‘A105 Family Decoded: Discovery of Genome’ [22], 
discusses utilizing tools for these SV detections, then comparing 
these variations to databases and conducting a knowledge mining 
[23] where these variations are known to be associated with a 
disease. Clearly, there will be many times when these variations 
cannot be validated experimentally, and thus machine and deep 
learning models would need to be deployed to understand these 
molecular variations signatures, as well as to see their importance 
in being associated with a complex disease. DNA sequencing 
for individuals is becoming increasingly cheaper to obtain, for 
example via NGS at sequencing centers where it can be done 
at a scale thereby distributing the fixed cost [24]. Once these 
variations are obtained, we need to encode them logically for a 
representative justified number that can be downstream deployed 
to deep and machine learning algorithms to see if the training 
results converge in test data.

METHOD 

The method discussed in this paper is based on a small pilot 
dataset of less than 200 individual for demonstration purpose 
of DMWAS. There would be more power in the analysis once 
the dataset is scaled up to thousands of individuals. Article 
‘Customized biomedical informatics’[25], showed qualitatively 
that the deviation of the sum of the nucleotides in DIPs was 
generally higher than the deviation of the sum of the nucleotides 
of the SNPs for the whole genome. In other words, deviations 
in DIPs were more representative of the individual differences 
among them and could thus attribute to their differences in 
endo-or-end phenotype. As an example, Article ‘Customized 
biomedical informatics’ [25] took the gender as the end 
phenotype and showed that the variance (and the standard 
deviation) between the set of structural variations (DIPs) was 
much higher than that of the sum of nucleotides of SNPs (Figure 
1), and stating that structural variations were a stronger means to 
determine the phenotype, i.e. gender here. Inspired by the article, 
this paper is about fine tuning and quantifying individual DIPs, 
so we introduce a deviation from consensus score to quantify 
the differences in SVs for these letters while also using one-hot 
encoding for the single nucleotide bases. 

Figure 1: Higher deviation is observed for sum of nucleotides of SNPs 
plus DIPs (blue) compared to sum of bases for the SNPs (magenta).
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We used DMWAS suite to simulate genomic data for genomic co-
ordinates as a combination of A, T, GC or a 4-letter combination 
for a larger letter. Comprised of a Python script genSampleData.
py, it can be used to generate genomic variation data specifying 
quantity of genomic loci, number of patients, frequency of 
occurrence of DIPs, and the maximum size of a DIP. Details of 
usage of script are specified in the downloadable ReadMe.md file 
from GitHub. For illustration purpose we are using 400 genomic 
co-ordinates. Typically, once the single letters are encoded to be 
present or not present at a certain genomic locus, they can be 
encoded as 1 or 0, longer letters are left as is. The letter ‘I’ is 
introduced to signify insertion wherever there are larger words 
of more than one letter and will take in value as 0 or the large 
word sequence based on absence or presence of inserted word 
respectively. 

In Figure 2 are the simulated data for 40 columns and 8 patients. 
The simulated genotype data for 200 loci is provided as file multi-
ColumnSample.csv. Once the simulated data is generated, and 
then we use the script splitMultiColDIPs.py to split each feature 
column into two columns, one column for 1 letter variants and 
another column for DIPs variants. The split file is available by 
name multiCol-umnSplitSample.csv as shown in Figure 3 is an 
example of data with each column doubled as per described 
method. 

With information for the DIPs as second column, we can extract 
them separately and conduct a clustering of the data such as by 
multiple sequence alignment, getting the divergence score for 
each DIPs from the consensus. While we could have worked on 
writing our own version of clustering algorithm, we decided to 
keep that as task for future while deploying existing tools that 

does clustering for the purpose of this paper. This method of 
encoding the letters based on divergence from a mean, median or 
consensus score is called ‘DivScoreEncoding’. DivScoreEncoding 
is different than one-hot, word embedding, index based encoding 
and other kind of label encoding methods as described in the 
article ‘Text Encoding: A Re-view’ [26].We realize that the InDels 
or DIPs can be different from each other and the difference in 
biological relevance such as by means of frame shift of codon or 
mutation at a point need to be given a score in biological context. 
The traditional means of encoding texts, such as those discussed 
at [26], do not take biological evolutionary distance into account 
when encoding for DIPs or In-Dels. These methods of DivScore 
Encoding are applicable to larger insertions and deletions as well 
as for other SVs in the genome like CNVs, translocations, etc. 
While critics might argue that insertions or deletions can simply 
be encoded as a new letter such as ‘I’, much of the variation from 
consensus information is lost in simplistic methods of encoding. 
Clustering methods are not new methods in this well-established 
domain. There is no reason why the benefits of such alignment 
for coding or non-coding region and score should not be used 
for downstream processing, such as in deep machine learning. 
Cross-species multiple sequence alignment has been tried using 
phylogenetic tree construction in article [27].In this paper we 
have distinguished ourselves by deploying multiple sequence 
alignment for feature scoring within a species, then using those 
features for downstream modeling to prioritize the dominant 
features in the model for the given trait. Articles ‘An integrative 
approach’ and ‘An integrative approach to’ [28,29] generate 
pathogenic scores of InDels throughout the non-coding genome 
to classify them into pathogenic or not, and would be clearly 
very different in terms of method and application, although the 
similarity remains in terms of the concept of giving a score to 
the InDels based on a biological role. Figure 4 shows a sample 
clustering by multiple alignments done words of varying length 
with consensus and divergence score for each sequence. 

For implementing DivScoreEncoding method by clustering, 
we have chosen T_coffee [30] software application to get the 
divergence score. This third-party software is available online. A 
wrapper Python script multiColDIPsDiv.py is provided, which 
automates extraction of the DIPs from multiCoumnSplitSample.

Figure 2: Randomly generated Genotype data for 8 patients for 
illustration purpose. The example data chosen for simulation 
comprises of 40 individuals and 200 genotypic loci. 

Figure 3: For illustration purpose, we show how the DIPs columns are 
generated, by splitting each feature column variable into 2

Figure 4: Example of a sample clustering by multiple sequence 
alignment with consensus regions and the consensus score with 
individual scores as well (which we call divergence score in this paper).
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csv file, then passes it to T_coffee software for multiple sequence 
alignment and divergence score determination. The idea is to get 
divergence scores from the consensus. Only T_coffee has been 
used to illustrate the idea, while other statistical techniques for 
divergence score determination can be explored and adopted for 
optimality. Script re-verseReadMulti.py is provided to reverse the 
scores obtained, and script ReplaceMultiColDIPsNew.py can be 
used to replace the DIPs with appropriate scores. This would lead 
to file with content such as in Figure 5.The resulting file is also 
provided as Multi-ColDIPsScored.txt. Before or after encoding 
the DIPS, once SNPs and DIPs columns are split, we can encode 
the SNPs. It will be best to encode the SNPs columns after the 
DIPs columns, using the scripts and flow above, and then encode 
the SNPs by one hot en-coding. The Python script encodeSNPs.py 
has been provided for this purpose; the resulting final scored and 
encoded file Multi-ColDIPsScoredEncoded.txt is also provided. 
Figure 6 shows a sample scored and encoded file snippet. 

Next step is to look for phenotype value. Using results for 
simulated data ensures the performance would be better than 
this in the real case data compared to this random data. Next 
phenotype values were generated- 1 for presence and 0 for absence 
of the phenotype. Since we had 40 individuals or rows, we 
generated 40 y-values 0-39, with the 1st row left as that of feature 
column variable names. File is named as Phenotype.txt. Now that 
the dependent column variable values and independent feature 
variable values have been prepared, we decided to use several 
machine learning methods, such as logistic regression, naïve bayes, 
gradient boosting, bagging, and adaboost, and deploy enhanced 
form of exhaustive multi-layer perceptron (MLP=in the form of 
DNN by incorporating early stopping criteria to avoid overfitting, 
using rectified linear unit (ReLU) as activation function to reduce 
weight adjustment time and addressing the vanishing gradient 
problem.  We also introduce an exhaustive nature of exploration 

for the right hidden layer and hidden units by varying the number 
of layers and number of hidden units in the DNN in a loop. Each 
time the best scores were chosen for its number of hidden layers 
and units. This exhaustive nature of DNN, when the range was 
given in realistic bound proved more useful than simply adding 
hidden layers as in a typical DNN, and thereby gave profound 
results, so this approach is called ‘Exhaustive DNN’. The scripts 
ExhaustivDNN.ipynb and ExhaustiveDNN.py are provided in 
DMWAS and feeds in MultiColDIPsScoredEncoded.txt as input 
file. The script internally looks for all columns with any null 
values that are removed before modeling. The data file was also 
separately checked for Null values and minor allele frequency 
(MAF) of at least 5% and the resulting encoded file is available 
at DMWAS as NullMafMultiColDIPsScoredEncoded.txt, which 
can be used as an alternative. From this file applying F-Test criteria 
for each of the feature columns we chose the top 1% of the 
feature set as the final data that the deep and machine learning 
scripts would work on. Once the models are generated by the 
various deep and machine learning scripts, we can then look for 
partial dependence score for each feature column and thereby 
have a final feature set optimization i.e., in our data the set of 
genomic variants. Feature set optimization has been an active 
area of research recently such as what we see in article ‘Feature set 
optimization’ [31]. Article ‘Opportunities and obstacles’[32] talks 
about various applications of deep learning in different spheres 
of biology and to which Exhaustive DNN as part of DMWAS 
with the DivScore Encoding methodology can play vital role as it 
is exhibited in the results section later.

RESULTS 

Exhaustive DNN proved very useful. 30% of data was used 
for test and prediction purpose, results shown as a confusion 
matrix. In less than a minute it resulted in model that was 100% 
accurate on the test data with the following configuration of 
hidden layers and hidden units, and the score on average for 
each training batch as 96%:hidden units: 8, hidden layers: 2, 
avg_score:0.9600000023841858. The confusion matrix is shown 
in Figure 7. It should be noted that continuing to run Exhaustive 
DNN to get higher accuracy would take a lot of computational 
resources. Here accuracy is defined as: Accuracy=(TP+TN)/
(TP+FP+FN+TN) 

Figure 5: The DIPs are replaced by the corresponding divergence from 
consensus score, lying between 0 and 100.

Figure 6: Now, the single nucleotide variations, SNVs or SNPs, are 
also one-hot encoded

Figure 7: Confusion MATRIX for ExhaustiveDNN model for 
simulated dataset.



5J Proteomics Bioinform, Vol. 14 Iss. 8 No: 1000547

Singh AN OPEN ACCESS Freely available online

Machine learning techniques, mentioned in previous 
section, were applied as well for which (Figure 8) shows their 
corresponding confusion matrices. Each script took less than 
1 minute to produce the confusion matrix, precision-recall 
curve, roccurve and list the dominant features. The scripts are 
available in DMWAS as createLogi-tReg.py, createAdaBoost.
py, createBagging.py, createGradi-entBoosting.py and 
createNaiveBayes.py, extratreeclassifier.ipynb, randomforest.
ipynb, support vector.ipynb. Given the current work context, we 
only discuss the confusion matrix produced by these software 
implementations of the various machine learning algo-rithms, 
which is enough to determine accuracy. When there would be 
imbalance in distribution of cases and control, then PR-Curve 
metrics would be worthwhile to discuss, as we later plan to scale 
up the work for larger dataset analysis in future. All results for 
ROC-curve, PR-Curve, list of dominant column variables, etc. are 
made available at DMWAS GitHub. Table 1 below summarizes 
the accuracy values obtained from these machine and deep 
learning software tools.

Using these approaches, the Naïve Bayes method seems to have 
the highest positive hits detected with 75% accuracy in this 
simulated data. 

However, using the Exhaustive DNN approach with a variation 
of number of layers and hidden units, with early stopping 
conditions, gave the best result with an accuracy of 100% almost 
immediately. The trick is to set the initial set of hidden layers 
and hidden units large enough while running Exhaustive DNN. 
However, Exhaustive DNN is smart enough to store the best 
model if you let the script execute for a given range. It uses k-fold 
test data splitting where k is taken as 10, for splitting the dataset, 
and then taking 1 split dataset at a time to test the accuracy 
keeping the rest for training. This is repeated for all 10 sets and the 

average score is reported. The initial opinion of 100% accuracy 
would be that the model has perhaps done over-fitting, the early 
stopping condition ensures that over-fitting does not take place. 
This is further substantiated by the fact that Exhaustive DNN 
does not give 100% accuracy in real GTEx data, as discussed later. 
The codes for Exhaustive DNN with early stopping condition 
have been shared as a separate python script at DMWAS GitHub 
page. Exhaustive DNN when allowed to continue after the 1st 
model has been generated can lead to multiple models, each with 
different average accuracy score such as that shown below in Table 
2 at epoch (cycles) of 100. The model with best average score is 
saved for its configuration to be used on test and real data.

Application of DMWAS to GTEx V7 Pilot dataset

We used the scripts of DMWAS for Genotype-Tissue Expression 
(GTEx) project V7 pilot dataset of 185 individuals, for the 
phenotype coded as MHHRTATT for the people who died 
of ‘heart attack, acute myocardial infarction, acute coronary 
syndrome’, and were able to see that most of the machine learning 
based algorithms could perform remarkably better for real case 
data. As an example, Figure 9 shows the AUC for ROC curve 
for logistic regression for the MHHRTATT phenotype. ROC 
curve plots for simulated data using various deep learning and 
machine learning tools are available at DMWAS GitHub page 
as additional resources. A score of 97.3% accuracy was obtained 
using logistic regression model of DMWAS as shown through the 
confusion matrix in Figure 10 for which the test data was taken 
as the entire GTEx V7 Pilot dataset. Then we deployed all the 
implementations of various algorithms that were previously tested 
for simulated data and took 30% of the GTEx V7 Pi-lot dataset 
size, 185 × 0.3=56 (round figure). The results obtained have been 
summarized in Table 3. The plots for various confusion matrices 
are shown as well in Figure 11.

Figure 8: Top left to bottom right: Confusion MATRIX for logistic regression, 
Naïve Bayes, Gradient Boost, Bagging approach, AdaBoost, RandomForest, 
Support Vector and Extratree Classifier respectively for simulated dataset.

Table 1: ExhaustiveDNN outperforming some of the popular Machine Learning methods for simulated dataset

Algorithm Accuracy %
Exhaustive Deep Neural Network 100

Logistic Regression 58.33
AdaBoost 66.67

GradientBoost 50
Naïve Bayes 75

Bagging 33.33
Support Vector 66.67
Random Forest 50

Extra Tree Classifier 66.67
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Table 2: Exhaustive DNN leading to several different average accuracy score for various combinations of hidden layers and hidden units.

 Hidden layers  Hidden units in each layer Average score of K-fold (k = 10)

2 8 0.9600000023841858

3 8 0.9400000005960465

4 8 0.9600000023841858

5 8 0.9400000035762787

6 8 0.9600000023841858

7 8 0.9600000023841858

2 9 0.9800000011920929

3 9 0.9800000011920929

4 9 0.9600000023841858

5 9 0.9200000047683716

6 9 0.6333333551883698

7 9 0.9800000011920929

2 10 0.9400000005960465

3 10 0.9600000023841858

4 10 0.6333333551883698

5 10 0.9600000023841858

6 10 0.9600000023841858

7 10 0.6333333551883698

2 11 0.9600000023841858

3 11 0.9400000005960465

4 11 0.9400000005960465

5 11 0.9600000023841858

6 11 0.9400000035762787

7 11 0.9400000005960465

Figure 9: ROC curve for Logistic regression in DMWAS suite MHHRTATT 
trait for GTEx V7 pilot dataset
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Table 3: List of various machine and deep learning algorithms with the score of their accuracy.

Algorithm Accuracy %

Exhaustive Deep Neural Network 78.5

Logistic Regression 94.64

AdaBoost 76.78

GradientBoost 76.78

Naïve Bayes 76.78

Bagging 78.5

Support Vector 94.64

Random Forest 78.5

Extra Tree Classifier 78.5

Figure 10: Confusion Matrix of Logistic Regression of DMWAS on GTEx 
V7 Pilot data for MHHRTATT trait giving accuracy of 97.3%

Figure 11: Confusion Matrices top to bottom for Exhaustive DNN, Logistic Regression, 
AdaBoost, GradientBoost, Naïve Bayes, Bagging, Support Vector, Random Forest, 
ExtraTreesClassifier for MHHRTATT phenotype GTEx V7 Pilot dataset. 
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DISCUSSION 

UEvidently for the given dataset of GTEx V7 Pilot the methods of 
support vector and logistic regression substantially outperformed 
other methods in terms of accuracy. Although most methods 
could detect the unaffected diseased individuals, support 
vector and logistic regression correctly classified majority of the 
individuals affected by MHHRTATT trait. Since true positives 
in the dataset were significantly less, once scaled up from pilot 
dataset to whole dataset analysis, such as for GTEx V8 data, the 
method would help deter-mine the precision rather than just 
depend on accuracy. Nevertheless, substantially good results from 
logistic regression and support vector machine methods were 
obtained as reflected in the substantial number of true affected 
cases that were predicted to be truly affected. 

The performance of the machine learning algorithm deployed 
would also depend greatly on how the encoding of genomic 
variations is done, such as the large words insertions. As the 
actual data size of human genome is about 6 billion for diploid 
genome per individual, more sophisticated methods for feature 
prioritization need to be deployed on a high-performance 
parallel computing hardware for realization of these methods, 
discussed in this article for practical implementation, if we are 
to not use the F-Test criteria to prioritize and reduce the data. 
For illustration purpose on real data, we showed how the results 
improve drastically as we achieve accuracy of 97.3% for real case 
data of GTEx V7 Pilot, for logistic regression, compared to only 
58.3% as in randomly generated simulated dataset. This 97.3% 
of accuracy was generated when the entire GTEx V7 Pilot data 
was used for testing purpose. 

This paper was to present ideas and implement innovative 
methods for small simulated data to aid in the future of 
healthcare, medicine and bioinformatics in general. The tools 
and techniques dis-cussed in DMWAS can be applied for solving 
other data science problems as once the encoding work is 
completed, the user can use any algorithm of his choice and not 
be locked into using those provided or suggested in this paper. 
This applies to the clustering DivScore Encoding method as well. 
For instance, we can give each letter a value, then calculate a mean 
or median score for the complete word, or use other sophisticated 
clustering method which use fuzzy logic for instance. The author 
has only tried to present the idea by an implementation and 
has not tried to optimize as to what score could possibly be best 
suited. Optimizing and finding the best algorithm to determine 
best score of DivScore Encoding for machine learning purpose 
can be scope of future work. Implementing DMWAS on a real 
genomic set of data for projects that sequence not just the SNPs 

but also InDels of patients would be our priority for future work. 

Optimized feature set for MHHRTATT biomarkers

These models can help us ‘optimize the feature set’ i.e., identify 
dominant variants that are strongly associated to the model - and 
thus to the disease. The possibility was explored on the simulated 
dataset as well as prediction was made for MHHRTATT trait 
for the GTEx V7 pilot dataset to see if we get a score for the 
DIPs variant columns. Table 4 lists a partial dependence score 
generated for the simulated data in which the variant columns 
were also captured. The partial dependence score is calculated 
for genomic variant columns having single nucleotide variant 
eg. 214_C would mean the C nucleotide at 214th column in the 
genome variant file, for showing that just the presence of DIP 
at a position eg. 232_I means that the 232nd genomic variant 
column having an insertion, for showing the effect of the 
insertion variants at that column simply the column number is 
stated eg. 377. Clearly, scores were the highest for those genomic 
columns for which the encoding was done for their insertion 
using the methods described in this paper. For the real case da-ta 
the top 10 optimized features were all belonging to InDel class as 
shown in Table 5 for the logistic regression; the column variable 
name and numbering is as per the GTEx data with extension 
file-name.PED and the actual co-ordinates can be found by 
looking at the corresponding rows of .MAP file. Note that since 
the.PED file comprise of one major allele and another minor 
allele information, the number of columns with regard to the 
genotype information is twice that of the number of rows in 
.MAP file and so tracing back of the corresponding genomic map 
coordinate should be done accordingly. As an example if the 
optimized feature has name 16,830,168_G, then the .PED file 
corresponding feature co-ordinate removing the initial 6 columns 
is 16,830,168 and the genomic variant that is having an effect is 
G. The corresponding genomic map coordinate line number is 
CEILING (16,830,168/4)=4,207,542. We divide by 4 since the 
GTEx data is generated for each allele for heterozygosity. This 
in the .MAP file corresponds to variant Id kgp30994055 and at 
position 52587347 of chromosome 23. The list of top associated 
and least associated genomic variants with their chromosome 
number, variant Id, and genomic loci are stated in Tables 5 and 
6 respectively. Apparently, the lowest scoring features were all 
SNPs (Table 6) however, the relative difference in the tops scorer 
and bottom scorer were not huge indicating a rheostat model 
of combined effect of the variants on the phenotype. However, 
there might be other traits as we shall evaluate as part of our 
future work, where we might see a huge difference in partial de-
pendency score.

Table 4: List of partial score and the corresponding column explanatory genomic variant variable.

PD values Column name

0.690258855 289

0.690258855 232_I

0.690258855 53

0.690258855 9

0.690258855 3

0.690258855 288_I

0.690258855 233



9J Proteomics Bioinform, Vol. 14 Iss. 8 No: 1000547

Singh AN OPEN ACCESS Freely available online

0.690258855 377

0.690258855 267

0.690258855 259

0.690258855 145

0.690258855 392_I

0.690258855 214_C

0.690258855 356_I

0.690258856 226_I

0.690258856 234_I

0.690258857 196_C

0.690258857 380_T

0.690258857 68_I

0.690258858 296_I

0.690258858 396_T

0.690258858 110_A

0.690258858 206_G

0.711782557 395

0.712538851 137

0.712730046 81

0.712760458 399

0.713352305 121

0.713557698 183

0.714217146 197

0.714282215 349

0.714400629 389

0.716420812 149

0.719423753 329

0.724220414 113

0.72980916 187

Table 5: List of top 10 partial score as per the logistic regression and the corresponding column explanatory genomic variant variable column number 
as per the GTEx V7 pilot data numbering. The corresponding genomic co-ordinates can be found using the .MAP and PED file information from 
GTEx dataset as described in ‘Optimized Feature set for MHHRTATT biomarkers’ section and are also shown in the table.

PDV values Column Name
GTEx Pilot 5M.PED.MAP File 

ROW Number
 Genotype

0.13895276827249736 9395961 2348991
Chromosome 9 position 95811874 and variant Id 

P1_M_061510_9_203_M
0.13895639781002272 7104275 1776069 Chromosome 6 variant Id  P1_M_061510_6_987_P position  162112867

0.13923530541027984 11354221 2838556
Chromosome 12 variant Id  P1_M_061510_12_59_P genomic position 

5223453

0.13927094791319042 11050029 2762508
Chromosome 11 variant Id P1_M_061510_11_420_M genomic position  

93911243

0.13947943677072142 9281287 2320322
Chromosome 9 variant Id P1_M_061510_9_163_M genomic position  

78004294

0.13949864891527605 6479351 1619838
Chromosome 6 variant Id  P1_M_061510_6_181_P genomic position 

48930947

0.13971383684704966 4671785 1167947
Chromosome 4 variant Id P2_M_061510_4_715_M genomic position 

137617593

0.13977059245647452 2642209 660553
Chromosome 2 variant Id P1_M_061510_2_509_P genomic position 

233364549

0.14012947617522825 3610447 902612
Chromosome 3 variant Id P1_M_061510_3_309_M genomic position 

145931899

0.14211946648423188 3884145 971037
Chromosome 3 variant Id P1_M_061510_3_402_P genomic position 

192063195
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Table 6: List of bottom 10 partial score as per the logistic regression and the corresponding column explanatory genomic variant variable column 
number as per the GTEx V7 pilot data numbering. The corresponding genomic co-ordinates can be found using the .MAP and .PED file from GTEx 
dataset information as described in ‘Optimized Feature set for MHHRTATT biomarkers’ section and are also shown in the table.

PD Values Column Name
GTEx Pilot 5M.PED.MAP File 

ROW Number
 Genotype

0.13240398739505238, 16830168_G 4207542 Chromosome 23 variant Id kgp30994055 genomic position 52587347
0.13240398739505238, 16830170_G 4207543 Chromosome 23 variant Id kgp31134917 genomic position 52588392
0.13240398739506198, 7592676_T 1898169 Chromosome 7 Variant Id kgp11290556 genomic position 70226068
0.1324039873952151, 3591768_T 897942 Chromosome 3 Variant Id  kgp5923265 genomic position 142797398
0.1324039873952151, 3591288_C 897822 Chromosome 3 Variant Id  kgp18185020 genomic position 142711709
0.1324039873952151, 13241510_T 3310378 Chromosome 14 Variant Id kgp28093020 genomic position 97615238
0.1324039873952151, 5093676_G 1273419 Chromosome 5 Variant Id kgp22643217 genomic position 13809129
0.1324039873952151, 5093678_G 1273420 Chromosome 5 Variant Id kgp22679345 genomic position 13809146
0.1324039873952151, 14435950_A 3608988 Chromosome 17 Variant Id kgp5104948 genomic position 4991686

0.14211946648423188 3884145 971037
Chromosome 3 variant Id P1_M_061510_3_402_P genomic position 

192063195

CONCLUSION AND FUTURE WORK

This paper has demonstrated and advocates use of clustering 
divergence score as a new way of genomic variant encoding 
particularly for structural variants larger than point mutations 
and demonstrated in for InDels, though the technique can 
well be applied to other SVs such as copy number variants, etc. 
We then deployed certain deep learning and machine learning 
methods for which we have provided the code as DMWAS at 
GitHub with sample results and script to simulate data. Several 
machine learning algorithms were experimented and MLP 
(multi-layer perceptron) script with alterations to gain properties 
of deep learning was developed in Python, such as early stopping 
condition to avoid over-fitting. This led us to 100% accuracy 
using Exhaustive DNN for the simulated data while accuracy for 
the real data was lower; confirming no case of over-fitting as far as 
the script logic is concerned. Other machine learning techniques 
such as bagging gave results lower than DNN with highest being 
75% using Naïve Bayes for the simulated data. We conclude that 
results and performance depend on the data and algorithm used 
for machine learning including deep neural network. The concept 
of clustering score is central to the ideas discussed in this paper 
and once the divergence scores are obtained, the downstream 
model-ing advance algorithm need not be just restricted to those 
mentioned in DMWAS GitHub page but could also use many 
other deep and machine learning algorithms such as even genetic 
algorithm as has been used for GARBO.

We used DMWAS for actual data such as for GTEx V7 pilot and 
prioritized models that showed more than 90% accuracy and 
thereby demonstrated on simulated data as well that the genomic 
variant column variables can be assigned a partial dependency 
score. We gave results for optimized feature for the top 10 
genomic variants for MHHRTATT heart disease related death. 
Many of the top scoring variants were those genomic loci having 
InDels. Future work for DMWAS would require extracting and 
prioritizing the top variants using various trait or phenotype, for 
other traits as we demonstrated for MHHRTATT. Future work 
requires up-scaling the analysis for the entire dataset such as GTEx 
V8 since the number of cases of individuals having the trait in 
pilot sample is very limited, thereby having considerable under 
performance for most of the deep and machine learning models. 
Future work also asks for exploring and comparing performance 

of other similar tools that deploy machine and deep learning for 
GWAS, such as CADD even though it was used in cross-species 
context, or GARBO which uses fuzzy logic and genetic algorithm, 
and see if there are complementary aspects that DMWAS can 
benefit from, in a future version of the tool.  The purpose of the 
current work was to not just describe a method, but also list top 
genomic variants associated to MHHRTATT. The idea is also to 
make DMWAS available and deployable for the purpose of deep 
learning and machine learning application to GWAS.

OPEN-SOURCE DEVELOPMENT & DISTRIBUTION 

The PR-Curve, ROC-Curve, PD Values (partial dependency 
scores based on the model for the genomic variant columns) for 
the simulated data and python scripts including script to simulate 
data is publicly accessible here: https://github.com/abinarain/
DMWAS. Note that the scripts work fine for small dataset on a 
modest computing facility.
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