
Volume 4(11) : 250-259 (2011) - 250 
J Proteomics Bioinform    
ISSN:0974-276X JPB, an open access journal 

Research Article Open Access

Kafkas et al., J Proteomics Bioinform 2011, 4:11 
DOI: 10.4172/jpb.1000198

Research Article Open Access

Diversity in the Interactions of Isoforms Linked to Clustered Transcripts: A 
Systematic Literature Analysis
Şenay Kafkas1,2*, Ekrem Varoğlu1, Dietrich Rebholz-Schuhmann2 and Bahar Taneri3,4

1Department of Computer Engineering, Eastern Mediterranean University, Famagusta, North Cyprus
2European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, Hinxton, CB10 1SD, UK
3Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, North Cyprus
4Institute of Public Health Genomics, Department of Genetics and Cell Biology, Research Institutes CAPHRI and GROW, Faculty of Health, Medicine and Life Sciences, 
Maastricht University, 6202 AZ Maastricht, The Netherlands

*Corresponding author: Şenay Kafkas, European Bioinformatics Institute, 
Wellcome Trust Genome Campus, Cambridge, Hinxton, CB10 1SD, UK.Tel: + 44 
(0) 1223 494 545; Fax: +44 (0) 1223 494 468; E-mail: kafkas@ebi.ac.uk

Received October 12, 2011; Accepted November 12, 2011; Published November 
29, 2011

Citation: Kafkas Ş, Varoğlu E, Rebholz-Schuhmann D, Taneri B (2011) Diversity 
in the Interactions of Isoforms Linked to Clustered Transcripts: A Systematic 
Literature Analysis. J Proteomics Bioinform 4: 250-259. doi:10.4172/jpb.1000198

Copyright: © 2011 Kafkas Ş, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Keywords: Protein isoforms; Protein-Protein Interactions; Machine
learning

Abbreviations: PPI: Protein-Protein Interaction; TBIID: Transcript
Based Isoform Interaction Database; DT: Defined Transcript; 
CMT: Cluster with Multiple defined Transcripts; CST: Cluster with 
Single defined Transcript; CUT: Cluster with Undefined Transcript; 
HumanSDB3: Human Splicing DataBase version 3; SVM: Support 
Vector Machine; PPIE: Protein-Protein Interaction Extraction; IAS: 
Interaction Article Sub-Task; TF: Term Frequency; ID: Identifier 

Introduction
Recent research in molecular biology has focussed on the 

identification of protein-protein interactions (PPIs) and the analysis of 
PPI networks to fully understand the organism’s functionality. These 
efforts have produced collections of PPI data by using high-throughput 
methods such as yeast two hybrid (Y2H) and affinity purification [1], 
as well as literature mining methods [2]. High-throughput methods are 
experimental while the literature mining methods are computational 
approaches which rely on biomedical text mining to gather the PPIs 
from textual data. The collected PPI data is stored in structured 
databases, which are generally accessible through the World Wide Web. 
Several comprehensive PPI databases are the Database of Interacting 
Proteins (DIP) [3], the Molecular INTeraction Database (MINT) [4] 
and IntAct [5]. However, these databases still cover only a portion of 
the interactome [6,7] and show limitations regarding PPIs involving 
protein isoforms. For example, in the PINA database [8] only a small 
portion of the interaction pairs (772, i.e. 1.3% of all interactions in 
PINA) involve a protein that is a splicing variant according to Uniprot 
Knowledge Base [9].

High-throughput technologies such as large-scale sequencing 
enable scientists to perform genome-wide searches for regions with 
similar transcripts. Such transcripts form the origin of proteome 
diversity and are induced by alternative splicing events. Constitutive 
RNA splicing removes introns (non-coding regions) from the 

premature messenger RNA (pre-mRNA) and ligates exons (protein-
coding regions) in the order as they appear in the genomic DNA to 
form the final mRNA. On the other hand, alternative splicing generates 
multiple different mRNAs with different exon-intron combinations 
from a single gene, by making use of alternate splice-sites within the pre-
mRNA [10]. Such mRNAs lead to the production of protein isoforms 
from the same gene possibly with differences in their structures and in 
their functions generated as a result of their sequence variations [11]. 
Hence, alternative splicing highly increases the coding potential of the 
genome, which can lead to a diverse proteome [10,12].

In principle, such isoforms either share the same function, show 
minimal functional differences, or have entirely opposite functions. 
We would expect such functional differences to be reflected in other 
properties of the isoforms, such as the variability of a protein in its 
interactions and interaction partners. An example can be given from 
the ROBO proteins, where their interactions with Slit ligands play role 
in neurogenesis regulation. The Slit receptor Robo3 has two isoforms, 
namely Robo3.1 and Robo3.2, which differ in their carboxy terminal 
groups leading to opposite functions. Robo3.1 silences Slit repulsion 
while Robo3.2 favours Slit repulsion. This difference in function 
induces opposite results regarding the midline crossing events in the 
commissural axons [13]. Alternative splicing is a widespread cellular 
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mechanism present across eukaryotic genomes [10]. Another example 
can be given from the C. elegans genome. The FGF receptor, EGL-15 has 
two alternative splicing variants (EGL-15(5A) and EGL-15(5B)) which 
differ in their extracellular domains leading to different functions. 
These isoforms play a role in the gonadal chemoattraction of the 
migrating sex myoblasts (SMs). Isoform 5A is required for attraction 
of the migrating SMs to the gonad, while isoform 5B is required for 
repulsion of the migrating SMs from the gonad [14].

High throughput methods have initiated the development of 
reference databases such as ASTD [15], ProSAS [16] and ECgene 
[17] that gather transcript diversity and alternative splicing events. 
Through sequence analysis across the reference databases it has been 
revealed that a large portion of genes exhibit alternative splicing events 
[15,18] and thus contribute to the transcript diversity to different 
degrees in various species: in homo sapiens 81-94%[15,18,19], in mus 
musculus 74-79% [15,18], in rattus norvegicus 39-61% [15,18,20] and 
in arabidopsis thaliana 42% [21]. Since alternative splicing and as a 
result also transcript diversity are both widespread within and across 
a number of genomes, it has been concluded that this process has been 
conserved evolutionarily [22]. The amount of experimentally identified 
transcript sequences is representative for proportion of alternative 
splicing detected in a given genome [23]. As the amount of sequence 
data increases, the relevance of transcript diversity will also increase 
in importance, which leads again to a higher detection rate for the 
functional variability of protein isoforms.

Here, we complement alternative splicing and transcript diversity 
studies with biomedical text mining in order to quantify the diversity 
of isoform interactions generated by these cellular mechanisms. Many 
studies have benefited from the automated analysis of the biomedical 
scientific literature [24-26]. However, until now only little effort has 
been spent on the identification of alternative splicing events or the 
analysis of isoform diversity from the literature [27,28]. This is despite 
the fact that both alternatively spliced forms and other kind of isoforms 
(i.e. isoforms having allelic origins and isoforms produced by gene 
duplication) contribute to the complexity of proteomes which can lead 
to significant variation in protein interactions. For example, Resh et al. 
has computationally shown that alternative splicing modifies biological 
structure of the isoforms, mainly by removing protein interaction 
domains which leads to redirection of protein interaction networks 
at key points [29]. In a more recent study reporting on the largest 
human testis protein phosphatase 1 (PP1) interactome, it has been 
experimentally shown that there is high diversity among the regulatory 
protein sets binding to PP1 isoforms in different tissues (77 proteins 
in testis and 7 proteins in sperm) [30]. Hence, it is important to better 
analyze the functional variability of isoforms at a large scale.

In this study, we analyzed the variability amongst the interactions 
of protein isoforms. For this purpose, we used the content of 
Human Splicing Database version 3 (HumanSDB3), which provides 
comprehensive genomic and transcriptomic data for human 
alternatively spliced variants and other kinds of isoforms but does not 
yet include protein interaction data for the isoforms [18].

Utilizing a comprehensive text mining pipeline, we systematically 
analyzed 4,083,094 Medline abstracts belonging to the clustered 
transcripts provided from HumanSDB3. We constructed an interaction 
database, which includes 7,161 proteins and 31,819 interactions, called 
the Transcript Based Isoform Interaction Database (TBIID). We used 
TBIID to quantify the variability in isoform interactions by analyzing 
the subset of interactions belonging to clusters having more than one 

distinct protein isoform. We quantified differences in the number 
of interaction partners for a total number of 1,226 proteins and a 
total number of 1,540 interactions and compare the results against 
reference PPI databases. This analysis demonstrates that almost all 
clusters analyzed (99%) contain isoforms exhibiting variation in their 
interactions.

To the best of our knowledge, this is the very first study which 
analyzes the effect of isoform diversity on the human interactome. 
TBIID is a novel database which supports further investigation on 
functional differences of isoforms based on this interaction variability.

Materials and Methods
HumanSDB3 development

For the analyses described in this work, we utilize HumanSDB3, an 
alternative splicing database for the human transcriptome, previously 
developed by Taneri et al. [18,23] as summarized here. HumanSDB3 
consists of clusters, each one containing overlapping transcripts based 
on their sequences, mapping to the same genomic region. Transcripts are 
either full-length mRNAs or Expressed Sequence Tags (ESTs). During 
the development process, the transcripts in a cluster of HumanSDB3 
were grouped according to the sequence alignment methods described 
in [18,23]. Briefly, around 4.5 million input transcripts were collected 
from UniGene human clusters and aligned to the genome (UCSC 
hg17). Only best aligned transcripts that show more than 75% sequence 
similarity to the genome having at least two exons where each of the 
exons matched the genomic DNA with 95% identity or have less than 
5 mismatches were kept. The final database contains a total number of 
1,459,966 transcripts from 20,707 different clusters each of which has 
70.5 transcripts on the average [18,23]. (HumanSDB3 is accessible at 
http://emmy.ucsd.edu/sdb.php?db=HumanSDB3.)

HumanSDB3 clusters

As previously reported by Taneri et al. [18,23], HumanSDB3 
contains variant (81.31%) and invariant (18.69%) clusters. Variant 
clusters are composed of transcripts exhibiting alternative splicing 
events, while invariant clusters represent genes for which alternative 
splicing was not revealed with the available input transcript data, at 
the time of database construction. Therefore, invariant clusters were 
excluded from our study (Clusters in HumanSDB3 are labelled to 
include database version number, chromosome number and cluster 
number. An example cluster id is Hs.3.chr15p.6725) [18,23].

For the purpose of the analyses presented here, we focus on the 
transcripts that have been annotated in the Entrez Gene Database 
[31] including an official symbol and name, termed here as Defined 
Transcripts (DTs) [32]. Furthermore, only the variant clusters 
that contain several different DTs (amongst additional undefined 
transcripts) are relevant for this study and are termed here as Clusters 
with Multiple defined Transcripts (CMTs). Clusters containing exactly 
one DT, i.e. Clusters with a Single defined Transcript (CSTs) and 
clusters containing none, i.e. Clusters with Undefined Transcripts 
(CUT) are not relevant. HumanSDB3 clusters were built via transcript 
alignments to the genome based on their sequence similarities. 
Therefore, a possibility remains that DTs from a given CMTs could 
also denote other kinds of isoforms, such as isoforms produced 
from allelic or duplicated genes, in addition to alternative splicing 
variants, but they have mapped to the same genomic locus based on 
very high sequence similarity. On the other hand, CSTs have a single 
DT and therefore are homogeneous. Table 1 provides two clusters as 

23]
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examples of a CST (cluster ID Hs.3.chr15p.6725) and a CMT (cluster 
ID Hs.3.chr14p.5840). The CST contains a single DT, which encodes 
THBS1 (Entrez Gene ID:7057) protein. The CMT contains DTs 
denoting two different serpin isoforms, namely SERPINA3 (Entrez 
Gene ID:12) and SERPINA5 (Entrez Gene ID:5104). Although, the DTs 
map to the same locus in HumanSDB3, our literature based analysis 
on the cluster (based on the GenBank transcript IDs) shows that the 
DTs denote isoforms encoded by two structurally similar serpin genes 
located on human chromosome 14q32 [33]. Previous studies have 
shown that these serpin family genes are clustered together in serpin 
gene cluster indicating that they evolved through gene duplication 
[33,34].

Text-mining pipeline

The pipeline for the literature analysis is shown in Figure 1. In the 
first step, all names for all DTs of the variant clusters in HumanSDB3 
were produced and used to retrieve all Medline abstracts linked to 
them. Every transcript was submitted to the Entrez Gene Database 
to retrieve its official symbol, name and additional term variants. In 
addition, all term variants from the SwissProt database [35] were added 
as well as synonyms of the retrieved symbols were produced to generate 
a rich term set for a comprehensive Medline search [32]. The search 
was limited to the human species only by using the Medical Subject 
Heading (MeSH) restrictions of PubMed [36]. 

In the next step, we identified all abstracts containing mentions 
of PPI. The protein mentions were tagged with the Genia tagger [37] 
and all abstracts were retained that contained two or more mentions 
of different protein. A Support Vector Machine (SVM) classifier was 
implemented using SVMLight [38] and was trained on the BioCreative-
II Interaction Article Subtask (IAS) dataset [39] to distinguish those 
abstracts that are likely to contain PPIs from the remaining ones (IAS 
SVM classifier). The effectiveness of SVM as a text classification tool 
has been demonstrated in various text classification problems [40,41]. 
The features used are: i) TF.χ2 term weights [42], ii) number of distinct 
protein mentions in the abstract, and iii) document classification scores 
that represent likelihoods according to naive Bayesian calculation for a 
document to report on PPI [43].  ii) and iii) can be considered as domain 
specific features for PPI document classification.TF.χ2 term weight is 
one of a large set of well known and frequently used term weighting 
schemes used in text classification. Distinct number of protein mentions 
has shown to be a good domain specific feature for selecting interaction 
abstracts, given that the probability of a randomly selected document 
being an interaction abstract increases with the number of distinct 
protein mentions in the document [44]. Document classification scores 
and the term weighting schemes lead to complementary precision/recall 
behaviours and their combination has shown to increase significantly 
the performance in document classification [45]. Our IAS SVM 
classifier was trained on the BioCreative-II IAS training dataset and 
has an F1-measure of 81.31% on the IAS test set which is in agreement 
with state-of-the-art performances. It achieves 3.31% higher than the 

best performing system of the regarding challenge [46] and 1.06% and 
0.41% better than the other state-of-the-art systems reported in [47] 
and [48] respectively.

All selected Medline abstracts were processed for Protein-Protein 
Interaction Extraction (PPIE). First, the protein mentions were 
translated into Entrez Gene Database IDs using gene normalization 
tool, GNAT [49]. Sentences with at least two different protein IDs were 
again classified for containing evidence of a PPI pair using an SVM 
with a tree kernel [50] (PPIE SVM classifier). The features were: i) 
all words between the two protein names in combination with three 
words prior to the first protein name and three words after the second 
one represented in a Bag of Words (BoW) representation. These 
features were used given that words surrounding the candidate entities 
potentially carry information regarding their relationships, ii) the 
features representing the relation between the two proteins identified 
by two different syntactic parsers used in the biological text mining 
domain: Ksdep [51] and Enju [52]. Significant contribution of such 
parsers to the accuracy in PPI extraction task has been demonstrated in 
several studies [53-55]. PPIE SVM classifier was trained on the AIMed 
corpus [56] which is one of the main gold standard PPI corpora in 
the biomedical domain. 10-fold cross validation experiments on the 
training data revealed a performance of 54.20% using F1-measure.

Manual assessment of the text mining pipeline

For the assessment of our text mining pipeline, we selected 100 
sentences at random and manually analysed a total number of 212 
extracted protein pairs. A total of 91 pairs were true positives and a 
total of 80 pairs were false positives, while the remaining 41 pairs were 
identified as false negatives. Overall, the performance of the system was 
estimated at an F1-measure of 60.07% with 68.94% recall and 53.22% 
precision. The F1-score obtained manually here is at the state-of-the-art 
level obtained in many PPI tasks [39]. Our manual inspection revealed 
that the errors were mainly due to faulty protein name normalization. 
Protein names were normalized to their Entrez Gene Database IDs 
by using GNAT which has a relatively low recall (73.80%) [49] due to 
missing protein names, achieving only partial recognition or assigning 
wrong protein IDs. For example, the sentence “Tudor domain 
missense mutations, including one found in an SMA patient, impair the 
interaction between SMN and fibrillarin (as well as the common snRNP 
protein SmB)” (PubMed ID:11509571) [57] states that “SMN” and 
“SmB” do interact, but is not recognized (false negative) since GNAT 
does not recognize or resolve the symbol “SmB”.

Cluster Type Cluster
 ID Transcript ID Gene ID Official Symbol Official Name

CST Hs.3.chr15p.6725 X04665 7057 THBS1 thrombospondin 1

CMT Hs.3.chr14p.5840 NM_000624 5104 SERPINA5 serpin peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 5

CMT Hs.3.chr14p.5840 CR601472 12 SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 3

CST: Cluster with Single defined Transcript, CMT: Cluster with Multiple Defined Transcripts
Table 1: Sample CST and CMT clusters.

Figure 1: Text mining pipeline.
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 An example of a false positive PPI comes from the sentence 
“CD26 mediates NH(2) terminus processing of CCL22, leading to the 
production of CCL22 (3-69) and CCL22 (5-69) that do not interact 
with CCR4” (PubMed ID: 15067078) [58]. It contains a negation and 
a coordination and leads to the extraction of an interaction between 
“CCL22” and “CCR4”. 

Results and Discussions
PPI database for isoforms from the literature

HumanSDB3 contains 16,826 variant clusters (Table 2) and only 
a small portion represent CMTs (446 clusters, 2.65%). The majority 
of clusters are CSTs (12,192, 72.50%) and 3,568 (21.21%) clusters are 
CUTs. Furthermore, 620 (3.68%) clusters overlap with other clusters, 
since at least one DT from any of these clusters shares the description 
with a DT belonging to a different cluster. These clusters were discarded 
for the purposes of this study. A total of 13,174 DTs are contained in all 
CST and CMTs of HumanSDB3 (12,638 clusters in total) and all were 
used for abstract retrieval leading to a corpus of 4,083,094 abstracts 
(Table 3). In 2,465,692 abstracts, we found mentions of two different 
proteins. Of those abstracts 205,270 were classified as containing 
PPI information based on the IAS SVM classifier. From this subset 
of abstracts, we extracted 267,718 sentences containing two different 
protein names and finally, 33,158 distinct interaction pairs using the 
PPIE SVM classifier in comparison to over 1.2 million hypothetical 
interaction pairs from all pair-wise combinations in a sentence. Self-
interacting proteins were excluded from our analysis since we focus on 
interactions between different protein isoforms.

 We linked the extracted interaction pairs to DTs from HumanSDB3 
clusters. For the majority of the interaction pairs (22,018, 66.40%) 
both protein partners were represented in HumanSDB3, whereas for 
9,801 pairs (29.56%) one interaction partner was missing and for the 
remaining 1,339 (4.04%) interaction pairs none of the two interaction 
partners were contained in HumanSDB3. All interaction pairs with at 
least one interaction partner in HumanSDB3 (31,819 interaction pairs) 
have been imported into the new PPI database called TBIID.

Interaction variability in CMTs

We quantified the variability of interaction partners of isoforms 
linked to DTs in the CMTs to gain insight on whether different 

isoforms share interaction partners with other isoforms in the CMT 
(called Shared Interactions, Figure 2) or have unique interaction 
partners, i.e. the isoform is the sole isoform in the CMT to interact 
with the given partner (called Unique Interactions). We focused on 
those CMTs that contain references to multiple isoforms with known 
interaction partners and we compared our data from the literature 
analysis with the content from publicly available PPI databases. The 
variability in their interaction partners serve as an indicator for the 
functional variability of the isoforms, i.e. shared interactions indicate 
that the isoforms have kept their functional profile, whereas unique 
interactions indicate a higher level of functional diversity introduced 
to the interactome. 

Table 4 gives an overview on our comprehensive Medline analysis. 
For 282 CMTs, at least one interacting isoform could be found while 
for 164 CMTs none was found. 194 out of 282 CMTs contain only one 
interacting isoform, while the remaining 88 CMTs contain multiple 
isoforms with known interactions. For the largest portion of CMTs 
(82%, 72 of the 88 CMTs), all the isoforms have unique interaction 
partners, whereas for 15 CMTs we found both shared and unique 
interactions of the isoforms, and only in 1 CMT, we found only shared 
interactions for all of its isoforms. As a significant finding of our study, 
we showed almost all CMTs (99%, 87 of 88 CMTs) exhibited unique 
interactions. Based on this finding we concluded that the isoforms of 
the CMTs have largely specialized towards having unique interaction 
partners to achieve functional diversity. Table 5 gives an overview of 
the distribution of shared and unique interactions across the 15 CMTs. 
The CMTs were categorized as having 2 or more than 2 isoforms and 
the average ratio of unique versus shared interactions in each category 
was found to be above 5.60.

It is noteworthy that CMTs with a single interacting isoform are 

Variant  
Clusters CUT Overlapping  

Clusters CST CMT CST+CMT

Total 16,826 3,568 620 12,192 446 12,638

[%] 100 21.21 3.68 72.50 2.65 75.15

CUT: Cluster with Undefined Transcript, CST: Cluster with Single defined 
Transcript, CMT: Cluster with Multiple Defined Transcripts

Table 2: Overview of the distribution of HumanSDB3 clusters.

        Phase                       Total

Abstract Retrieval 4,083,094

Abstract Selection
Abstracts* 2,465,692

Interaction abstracts 205,270

PPI Extraction

Sentences* 267,718

Protein pairs generated 1,200,483

Distinct interaction protein pairs 33,158

*Text containing at least two different protein mentions
Table 3: Literature analysis results for human alternatively spliced genes.

 

Figure 2: Illustration of CMTs containing distinct isoforms with possible 
interactions. (a) The CMT could contain isoforms with unique interaction partners 
only. (b) The CMT could contain isoforms with shared interaction partner only. 
(c) The CMT could contain isoforms having both; unique and shared interaction 
partners.

Nof Interacting Isoforms Interaction Type Nof CMTs

0 - 164

1 - 194

>1 Shared 1

>1 Unique 72

>1 Both 15
Nof:Number of

Table 4: Distribution of CMTs according to number and interaction types of 
isoforms based on literature analysis.
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overrepresented possibly induced by the following reasons. First, some 
isoforms are more frequently represented in the literature since they 
have been studied more extensively in experiments. Second, some 
isoforms reported in the scientific literature could be missing from 
HumanSDB3 if mRNA or EST sequences were not available at the 
time of database generation or the available sequences did not meet 
the HumanSDB3 inclusion criteria. This would also depend on the 
transcript sequencing depth from given tissues, as some isoforms are 
known to be tissue-specific. Similarly, alternative splicing is known to 
be a developmental stage specific process, therefore presence of certain 
isoforms could depend on availability of sequencing from different 
developmental stages. In addition, the text mining pipeline employed 
could miss some interaction data.

Validation of the text mining results against PPI databases

In order to validate our results from the literature analysis, we 
compared the extracted PPIs for the isoforms linked to the selected 
CMTs to the content of the Protein Interaction Network Analysis 
Platform (PINA) [8]. PINA is a comprehensive and a state-of-the-
art PPI dataset containing binary interactions from the six major PPI 
databases: DIP [3], MINT [4], IntAct [5], BioGRID [59], HPRD [60] 
and MIPS/MPact [61]. In contrast to many other resources, PINA 
suits to the purpose of this study taking into consideration that PINA 
excludes genetic interactions and complex formations. 

 PINA had to be pre-processed to remove all non-human 
interactions and all self-interactions of isoforms leading to 58,221 
interactions between 11,856 different proteins. Then, Entrez Gene 
Database IDs of all proteins used in our study were mapped to their 
corresponding Uniprot accession number required for PINA using the 
Uniprot ID mapping system [62].

 For all isoforms linked to the CMTs, the number of PPIs and their 
interaction type were identified in PINA (Table 6). For 345 CMTs, at 
least one interacting isoform could be identified within a PPI in PINA, 
whereas for 101 CMTs none could be found. A total of 158 CMTs have 
multiple interacting isoforms in contrast to 187 CMTs having a single 
interacting isoform only (Table 6). Amongst the 158 CMTs, we find 
119 CMTs where the isoforms have only unique interactions whereas 
9 have only shared interactions and 30 have both types of interactions 

(Table 7). Altogether, the majority of CMTs (94%, 149 of 158) do 
have multiple interacting isoforms exhibiting variability in their 
interactions. The average ratio of unique versus shared interactions for 
the clusters with two isoforms (8.82) was found to be slightly higher 
than the average values obtained for the clusters with more than two 
isoforms (7.53). 

 Altogether, the distribution of the interaction types in PINA 
was found to be in agreement with our results obtained through our 
comprehensive Medline analysis. Importantly, the average ratio of 
unique versus shared interaction values obtained in both categories by 
using PINA was slightly higher, indicating that a more fine-grained PPI 
dataset was obtained because of the interaction mapping process. 

TBIID in comparison to PINA

We imported the results from our complete literature analysis 
into an interaction database called TBIID, which currently comprises 
31,819 interactions for 7,161 unique proteins. A total of 5,615 of these 
proteins represent unique DTs belonging to either CSTs or CMTs and 
therefore can be linked to the corresponding gene/transcript sequence 
information in HumanSDB3. In particular, TBIID gives access to CMTs 
with multiple interacting isoforms exhibiting interaction variation, i.e. 
clusters with isoforms having either only unique or both unique and 
shared interactions. These clusters cover 1,540 interactions between 
1,226 distinct proteins, where 994 of these proteins can be linked to 
the HumanSBD3. 

 When comparing TBIID against PINA, we found the following 

Iso/CMT HumanSDB3 Cluster ID Nof Iso Nof S Nof U  Nof S/Iso Nof
U/Iso U/S Avg U/S

2

Hs.3.chr6p.16643 2 22 38 11.00 19.00 1.73
Hs.3.chr17p.8013 2 20 50 10.00 25.00 2.50
Hs.3.chr11p.3558 2 12 24 6.00 12.00 2.00
Hs.3.chr6n.17144 2 10 46 5.00 23.00 4.60
Hs.3.chr1n.278 2 8 35 4.00 17.50 4.38

Hs.3.chr5n.15390 2 8 52 4.00 26.00 6.50 5.68
Hs.3.chr14p.5840 2 4 25 2.00 12.50 6.25
Hs.3.chr12p.4823 2 2 40 1.00 20.00 20.00
Hs.3.chr17n.8529 2 2 6 1.00 3.00 3.00
Hs.3.chr19p.9432 2 2 19 1.00 9.50 9.50

Hs.3.chr22p.13094 2 2 4 1.00 2.00 2.00

 
>2
 

Hs.3.chr6p.16595 3 14 38 4.67 12.67 2.71  
Hs.3.chr3p.13906 3 2 11 0.67 3.67 5.50 5.62
Hs.3.chr17n.8527 4 5 15 1.25 3.75 3.00
Hs.3.chr17n.8355 5 4 45 0.80 9.00 11.25  

Iso:Isoforms, Nof:Number of, Avg:Average, S:Shared interactions, U:Unique interactions
Table 5: Distribution of shared and unique interactions across CMTs based on literature analysis.

Nof Interacting Isoforms Interaction Type Nof CMTs

0 - 101

1 - 187

>1 Shared 9

>1 Unique 119

>1 Both 30

Nof:Number of
Table 6: Distribution of CMTs according to number and interaction type of 
isoforms based on the PINA PPI dataset.
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results. On one hand, 4,944 (69.04%) proteins were shared between 
TBIID and PINA (this number was 927 (75.61%) proteins when only 
the clusters showing interaction variation were considered) (Figure 
3). On the other hand, only 2,863 (9.00%) interactions in TBIID were 
also contained in PINA (this number was 141 (9.16%) when only 
the clusters exposing interaction variation were considered) (Figure 
3). Altogether, TBIID provides access to a set of interactions that is 
rather complementary to PINA according to our analysis and since 
PINA integrates content from different primary data resources, we 
also conclude that TBIID is complementary to those primary data 
resources. 

This result is not surprising, since the two PPI databases follow 
different standards and use different resources to identify relevant PPI 
information. The content analysis from PINA revealed that 57.92% of 
interaction entries were contained only in a single primary database, 
and only for 27.63% we found an interaction that was shared between 
any of the two databases constituting PINA (Table 8). In PINA, 8.90%, 
5.33%, and 0.22% of interactions were shared amongst three, four, and 
five databases, respectively. This is also true for TBIID, i.e. 41.84% of 
the overlapping interactions in TBIID were reported in only one of 
the databases and 42.26% were reported in two databases constituting 
PINA. In TBIID, 11.81%, 3.39%, and 0.70% of the interactions were 
reported in three, four and five primary databases, respectively. 
It should be emphasized that, altogether 85.55% and 84.10% of 
interactions in PINA and TBIID respectively were reported in at most 
2 primary databases.

Iso/CMT Cluster ID Nof Iso Nof S Nof U Nof S/Iso Nof U/Iso U/S Avg U/S

 
2
 

Hs.3.chr11p.3558 2 40 12 20 6 0.3  
Hs.3.chr17n.8529 2 22 54 11 27 2.45
Hs.3.chr5n.15390 2 18 71 9 35.5 3.94
Hs.3.chr6p.16643 2 10 13 5 6.5 1.3
Hs.3.chr12n.4463 2 8 6 4 3 0.75
Hs.3.chr19n.10450 2 6 25 3 12.5 4.17
Hs.3.chr6n.17144 2 6 26 3 13 4.33
Hs.3.chr17n.8585 2 4 4 2 2 1
Hs.3.chr1n.278 2 4 10 2 5 2.5 8.82

Hs.3.chr6n.17040 2 4 13 2 6.5 3.25
Hs.3.chr11n.3142 2 2 48 1 24 24
Hs.3.chr17p.8013 2 2 9 1 4.5 4.5
Hs.3.chr17p.8043 2 2 43 1 21.5 21.5
Hs.3.chr1n.361 2 2 134 1 67 67

Hs.3.chr2p.10772 2 2 4 1 2 2
Hs.3.chr4p.14617 2 2 11 1 5.5 5.5
Hs.3.chr4p.14694 2 2 3 1 1.5 1.5  

 
>2
 

Hs.3.chr16p.7233 3 27 2 9 0.67 0.07  
Hs.3.chr15p.6760 3 8 18 2.67 6 2.25
Hs.3.chr3p.13906 3 8 57 2.67 19 7.13
Hs.3.chr17n.8437 3 6 8 2 2.67 1.33
Hs.3.chr11n.3383 3 4 10 1.33 3.33 2.5
Hs.3.chr17n.8754 3 2 64 0.67 21.33 32
Hs.3.chr6p.16595 3 2 15 0.67 5 7.5 7.53
Hs.3.chr9n.19822 3 2 59 0.67 19.67 29.5
Hs.3.chr12n.4311 4 6 14 1.5 3.5 2.33
Hs.3.chr17n.8527 4 2 13 0.5 3.25 6.5
Hs.3.chr17n.8355 5 16 81 3.2 16.2 5.06
Hs.3.chr1p.1548 6 18 2 3 0.33 0.11

Hs.3.chr5p.15887 14 12 19 0.86 1.36 1.58  
Iso:Isoforms, Nof:Number of, Avg:Average, S:Shared interactions, U:Unique interactions

Table 7: Distribution of shared and unique interactions across CMTs based on the PINA PPI dataset.

 

(a) Protein overlaps                                                (b) Interaction overlaps 

Figure 3: Venn diagrams showing overlaps between PINA and TBIID. 

Dataset
Number of databases containing the interactions

1 2 3 4 5 

PINA 33,725(57.92%) 16,086(27.63%) 5,182(8.90%) 3,102(5.33%) 126(0.22%)

TBIID* 1,198(41.84%) 1,210(42.26%) 338(11.81%) 97(3.39%) 20(0.70%)

*Overlapping interactions with PINA only
Table 8: Interaction pair distribution in PINA and overlapping datasets.
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These results show that the current PPI databases set a different 
focus in the selection of the PPIs. According to the previous studies, the 
heterogeneity of publicly available PPI databases is due to differences 
in the fact extraction methods, the curation methods and the utilized 
literature resources for the construction of the PPI database [6,7,63]. 
These reasons would explain the low rate of overlap (9.00%) between 
PINA and TBIID as well. We can reduce the emphasis on the selection 
of publication records, since 8,326 (42.98%) Medline abstracts in PINA 
are also contained in our retrieved set of abstracts (4,083,094 abstracts 
in total), and from this set 7,333 (37.85%) Medline abstracts are also 
included in our interaction abstract set (205,270 abstracts in total). 
Altogether, TBIID content was generated by automated text mining 
tools (recall: 68.94%, precision: 53.22%). In addition, TBIID relies 
only on freely available Medline abstracts, whereas many literature-
curated databases use full text articles which would increase the rate 
of identified PPIs [38]. Another source of error is a 4% error rate in 
the assignment of Gene IDs from TBIID to their corresponding 
Uniprot accession numbers requiring that TBIID keeps the reference 
to the source text (Medline abstracts) to manually resolve questionable 
assignments. We conclude that the content in our interaction database 
has a specific focus but the distribution of entries is very similar to 
standard PPI databases.

TBIID Web-interface

A web interface was developed for the purposes of visualization of 
the TBIID content. Findings in TBIID are linked to the HumanSDB3 
database, constructing a bridge between transcriptomic information of 
isoforms and their protein interactions. TBIID is publicly accessible at 
http://tbiid.emu.edu.tr.

A query system is embedded into the interface enabling users to 
search for the interactions of their protein isoforms of interest. Users 
can search for interactions either by using Entrez Gene Database IDs 
or official symbols of the protein isoforms. It is also possible to search 
interactions extracted from a given Medline abstract by submitting its 
PubMed ID to the query system.

We demonstrate the utility of TBIID and the usage of the web-
interface by using CMT cluster Hs.3.chr1n.278 as an example. This 
particular cluster in HumanSDB3 contains two DTs for human IgG 
Fc Receptor III (FCGR3) coding two distinct 97% identical allelic 
isoforms, FCGR3A and FCGR3B [64].

Figure 4 illustrates a screenshoot from TBIID during the retrieval 
of the interactions involving low affinity immunoglobulin gamma Fc 
region receptor III-B from TBIID content by using its official symbol 
(FCGR3B). TBIID is unique in its interface since interactions of the 

Figure 4: Screen-shoot representing the retrieval of the FCGR3B interactions from TBIID content.

http://tbiid.emu.edu.tr
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queried isoform are listed along with all other isoforms linked to the same 
HumanSDB3 cluster. Interactions of isoforms can also be visualized 
graphically. Hereby, we enable the end-user to simultaneously analyze 
the shared and unique interactions of all protein variants linked to the 
same cluster. Shared interactions of the queried isoform are highlighted 
with a different colour.

 Proteins in TBIID are linked to the Entrez Gene Database providing 
access to additional information (e.g. functions - Gene Ontology 
(GO) terms, and metabolic pathways), which are crucial for good 
understanding of isoform interactions. Analyzing GO terms of FCGR3 
isoforms by facilitating the web interface reveals that they share some 
molecular functions (Ig binding and receptor activity) and are involved 
in immune response processes. Given shared molecular functions, we 
could hypothesize that these isoforms have shared interactions. 

 The PINA database reports 12 interaction partners for FCGR3A 
(APCS, CD247, CD38, CD4, FCER1G, GP6, FCGR1A, IGHG1,LCK, 
PTPRC, SHC1, ZAP70) and only 4 partners for FCGR3B (APCS, 
IGHG1, M(2)21AB, Myb). Two of these partners, APRCS and IGHG1, 
are shared between the isoforms. However, utilizing TBIID, we could 
derive other potentially interesting interaction partners. For example, 
TBIID reports PTPRC (Entez Gene ID: 5788) as a shared interaction 
partner which is not reported by the primary PPI databases of PINA. 
This finding of TBIID is supported by experimental evidence reported 
from the literature (see PubMed IDs: 8157290 and 9173906). In addition, 
TBIID reports another unique interaction partner for FCGR3B isoform, 
TEC (see Entrez Gene ID:7006, PubMed ID: 15899983). As illustrated 
in the example discussed above, when compared to the other available 
analysis tools for the PPIs, TBIID provides differential interactions 
of isoforms. These functional features which are unique to TBIID are 
accessible through the database web-interface. 

Conclusions
In this study, a new database, TBIID, which contains PPIs of human 

protein isoforms is presented. A comprehensive text mining pipeline is 
applied to the gene and transcript data contained in HumanSDB3 and 
a large scale analysis of PPIs is presented involving a significant portion 
of the proteome. State-of-the-art biomedical text mining tools are 
developed and utilized to automatically select abstracts that are likely 
to contain protein-protein interaction data and extract interaction 
annotations of protein isoforms from the interaction abstracts.

TBIID is screened for identifying and quantifying the variation in 
isoform interactions. The results based on our quantitative analysis 
reveal that an overwhelming majority of CMTs (99%) exhibit isoform 
interaction variability. Our findings have been validated against the 
literature-curated PPI data.

Up to now, neither a comprehensive PPI database for protein 
isoforms has been generated, nor has the variation in the isoform 
interactions been investigated on a large scale. TBIID brings both of 
these novel features to the PPI field. Undoubtedly, TBIID will help to 
initiate further studies on how alternative splicing and other transcript 
diversity mechanisms increase the complexity of proteomes and thus 
interactomes through potential differential interactions of protein 
isoforms. In this study, by investigating the data contained in TBIID, we 
for the first time provide quantitative evidence for the variability within 
the isoform interactions and thus functions. Presumably, the main 
source of this diversity is alternative splicing given that HumanSDB3 
variant clusters contain mRNA and EST transcripts exhibiting 
alternative splicing events and thus are considered as splice variants. 

However, further detailed analysis on single CMTs is required to 
identify the exact transcript diversity mechanisms behind each isoform 
interaction. TBIID facilitates such further analysis on CMTs as well as 
representation of putative unique interactions of isoforms and thus 
within this context opens up the possibility for potential experimental 
exploration of different interactions of isoforms. Furthermore, the 
developed text mining tools used in the construction of TBIID are 
presented as efficient tools for abstract retrieval, protein interaction 
article selection and PPI extraction tasks on other platforms.

Our future research directions include extension of the study 
presented here to further investigate the functional variability of the 
protein isoforms. In order to assess the functional variation, we plan 
to analyze the distribution of functional annotations on the basis of 
Gene Ontology terms for all isoforms. Understanding the diversity in 
isoform functions and interactions is vital for successful drug discovery 
procedure, and not to mention drug docking. Interaction partners of 
isoforms exhibiting functional diversity are potentially good targets for 
pharmacological interventions [65]. Hence, the gathered data will be 
helpful in isoform-specific drug design. Isoform-specific drugs offer 
therapeutic advantages such as preventing disease progress over their 
non-specific types given different functions of isoforms. We also plan 
to gather disease-related information associated with CMTs. Such 
information would help to understand the mechanisms of transcript 
diversity, aberrant isoforms and their implications in abnormal protein 
functions as well as serving as an important information resource for 
molecular therapies. 
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