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Abstract

The objective of this study is to present a new variation on Distributed Lag Non-Linear Models (DLNMs) for
assessing associations between counts of health events and exposure to ambient air pollution. For illustrative
purposes, a well-known data set for Milan, Italy was considered. Total Suspended Particulate (TSP) concentrations
were used as the air pollution measure, and meteorological data were represented by daily mean temperature and
relative humidity. Relative risks (RR) were estimated using Poisson Generalized Linear Models. Two controls for
long time-scale variation were considered: a more traditional cubic regression spline smoother, and the more recent
case-crossover (CC) control approach. The mortality displacement effect was estimated using DLNMs for a
relatively high number of constructed lags. For the considered lags (0–45 days) and the CC approach, three regions
were identified: region A (lags 0–7) with RR=1.021 (95 % confidence interval: 1.009, 1.043; region B (lags 8–27)
with RR=0.981 (0.965, 0.997); and region C (lags 28–45) with RR=1.018 (1.003, 1.032). The total cumulative risk
(regions A + B + C, lags 0–45) gave RR=1.019 (1.001, 1.037). The results were reported for an interquartile range
(IQR=86.5) increase in TSP air pollution and are similar in structure to those previously reported, albeit at a
significantly reduced level. We attribute the change to the considerable change in long timescale variation left in the
residuals, as the clustering effect controls seasonal effects at a much stronger level.

Keywords: Air pollution; Distributed lags; Mortality; Humidity;
Temperature; Case-crossover; SAS

Introduction
The aim of this paper is to demonstrate a methodological

development for distributed lag models using a case-crossover
(clustering) approach to control for long timescale variation. As a
demonstrative example, we perform an analysis of the Milan, Italy
mortality data set [1] using our new statistical approach. As scientific
progress on the methodology and techniques related to air pollution
exposure and associated health conditions is continuing, it is
interesting to consider new techniques for estimation of associations
that are widely known and published in the scientific literature. This
study uses distributed lag non-linear models (DLNMs) to effectively
represent and quantify associations showing non-linear and delayed
effects in time-series data. In particular, we apply DLNMs to quantify
mortality displacement as in [1].

This is a methodological paper using real data as a demonstrative
example. As health data we are using mortality counts, and relating
them to exposure to ambient particulate matter (PM) in the form of
Total Suspended Particulate (TSP). Extensive research has
demonstrated the associations between exposure to PM and different
health conditions related to respiratory and cardiovascular diseases
and mortality [2-7]. Thus studies in this domain address an important
aspect of environmental epidemiology.

The main purpose of this paper was to compare and contrast two
different approaches to the estimation of mortality displacement, both
using distributed lag non-linear models. In the first approach, we use
case-crossover clustering to account for long timescale variation, and
in the second we use a more traditional natural cubic regression spline

smoother. These two models are compared using the Milan data set
[1], as a well-known previously studied example.

Distributed lag models are a modeling schema for presenting
simultaneously both non-linear and delayed dependencies in time-
series data [8]. The DLNM methodology in particular is an extension
of a statistical regression model for defining the relationship between a
set of predictors (such as air pollution) and an outcome (such as health
conditions). In this methodology the estimated relationships allow for
a temporal structure of dependency. This is useful because in
environmental epidemiology a specific occurrence of an exposure
event often affects the health outcomes for a lapse of time beyond the
event moment.

Materials and Methods
To demonstrate our developments, we used the well-known

1980-1989 Milan, Italy mortality database [1]. The considered data
were retrieved from the package SemiPar [9], where they are included
for illustrative purposes. In our analysis we considered the time-series
data of the form:

(xt,yt)=(mortality, airpollution)t, t=1,2,…,3652

i.e., daily mortality and daily mean air pollution for 3,652
consecutive days. We assumed that the data used are close to their
original representation, i.e., to the data described in the published
work on mortality displacement, an assumption backed by our Table 1
and the similar Table 1 in [1] . The mortality data are daily counts
derived from death certificates and are restricted to residents of Milan
who died from natural causes (International Classification of Disease
revision 9, cases 1-799). As was the case for the authors of the
publication containing the original data, we also used Total Suspended
Particulates (TSP) as our ambient air pollution measure. The imputed
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(19% originally missing) version of the TSP data was provided by the
SemiPar package, and thus used. Meteorological data were expressed
as daily mean temperature and relative humidity. In the considered
data set from SemiPar, there were no missing values for any of the
considered data variables.

Variable Average Range SD Median IQR

Mean temperature 14 -6.1 – 31.5 8.1 13.7 14

Mean relative humidity 62 0 – 99.7 17 62.3 24

TSP 136.5 3.5 – 529.5 76 117.1 87

Total mortality 32 Oct-66 7.7 31 11

Table 1: Summary statistics of Milan mortality data (SD –standard
deviation, IQR–interquartile range (75th percentile–25th percentile)).

We analyzed the Milan mortality data using a Poisson Generalized
Linear Model (GLM) [10] framework, with computation and
estimation done in the R programming language [11] using the DLNM
package [8,12]. The script used in R is presented in the Appendix 1. As
our data are time-series, we applied two approaches to adjust for time-
based variation (across 3652 days). In both approaches the model used
was matched to that of [1] as closely as possible. Thus, each model
contains a DLNM function of TSP, as well as spline functions of
temperature and relative humidity (with 4 df each) and indicator
variables for high temperatures, as in [1]. The remaining terms deal
with the day-of-week effect and long time-scale variation, and it is here
that the approaches diverge.

Cluster: 2 weeks Cubic Spline, 33 df 

Region/Lag RR 95% CI RR 95% CI

A: 0 - 15 1.012 0.998, 1.026 1.04 1.021, 1.056

B: 16 - 20 0.993 0.988, 0.999 1.003 0.997, 1.009

C: 21 - 45 1.014 0.998, 1.030 1.029 1.006, 1.054

A: 0-7 1.021 1.009, 1.033 1.035 1.021, 1.050

B: 8-27 0.981 0.965, 0.997 1.016 0.996, 1.036

C: 28-45 1.018 1.003, 1.032 1.021 1.002, 1.041

A+B+C: 0-45 1.019 1.001, 1.037 1.074 1.035, 1.113

Table 2: Results: decomposition of the TSP effect.

For our first approach, we applied a case-crossover clustering
approach, and grouped the data by 14-day periods, with each group
considered as an individual cluster with two measurements for the
same day of the week ([13,14] for details on why this is a sensible
choice). For verification purposes, we repeated our analysis and
defined clusters by 21-day periods instead. In the latter situation we
had 3 data points for each day of week. We did this twice by grouping
days into clusters in descending (from 1 to 3,652) and ascending (from
3,652 to 1) temporal order. In our second approach, we used a natural
cubic regression spline smoother to control for time with 33 degrees of
freedom (df), i.e., the effective df used in [1]. This approach is widely
used in environmental epidemiology, although traditionally more df
are used. This lower df choice was made in an attempt to match the
model of [1] as closely as possible, although we used a fixed-df spline

smoother rather than the penalized smoother used there. In the second
approach we also included a day-of-week term, which was not
necessary in the clustering approach.

We considered a high number of possible lags (0-45 days) for TSP,
the same number chosen by Zanobetti et al. in their initial analysis [1].
The full specifications of the DLNM + GLM model used are presented
in the R script in the Appendix 1.

Results
The results are organized and presented in three figures and two

tables. Table 1 presents summary statistics on mortality and
environmental characteristics (TSP, temperature, and relative
humidity). The table appears to be nearly identical to a similar
summary provided by Zanobetti et al. [1], (Table 1). The results for an
increase in one Inter-Quartile Range (IQR) of TSP (86.9 for this
dataset) are presented in Table 2 as relative risks (RRs) with their
corresponding 95% Confidence Intervals (95% CI). The results are
shown for three regions (lag ranges) labeled as A, B, and C. The
regions were determined on the basis of the values of individual
relative risks as in [1]. The table shows both the results using the
regions A, B and C as determined in [1], i.e., A being lags 0-15, B being
lags 16-20, and C being lags 21-45, and also for regions as determined
by our first, new, approach, using the case-crossover clustering control
for time, with the determination made in the same way: positive RRs
(A, lags 0-7), negative RRs (B, lags 8-27), and positive RRs (C, lags
28-45).

Figure 1: Effects of exposure to TSP on relative risk (RR) of
mortality along the considered lags, for regions A, B, and C with
borders where RR=1.0. The solid line is our “Approach 1”,
accounting for long timescale variation using the case-crossover
approach, while the dashed line is our “Approach 2”, using natural
cubic regression splines for time-based smoother.

The results shown in Table 2 were obtained using the code from
Appendix A, estimating a GLM for each model described above, with
our two approaches for controlling long timescale variation The
results for the smooth function of time model are not identical to those
previously estimated in [1], but they do share common structure:
positive and significant for regions A, C and the total cumulative
effect, and not significant for region B. This holds for both the region
classification scheme for [1] and the classification obtained from our
clustering time-control approach. The total cumulative RR=1.074
(95% CI: 1.035, 1.113) is higher than that obtained in [1], but we have
replaced the penalized spline smoothers with fixed-df smoothers, so
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some variation between the two is expected. For our new approach,
GLMs are estimated with two-week clusters acting in place of the
smooth function of time. Each cluster contains two of each of the days
of week (see R code in Appendix 1, and [13,14] for details on choosing
two-weeks versus three or more). Under regions defined as in [1],
regions A, RR=1.012 (95% CI: 0.998, 1.026), and C, RR=1.014 (95% CI:
0.998, 1.030) cease to be positively significant, while region B becomes
negative and significant, RR 0.993 (95% CI: 0.988, 0.999). When
restricted by its own positive/negative relative risk status, chosen as in
[1], the results return closer to the state previously observed, with
regions A, RR=1.021 (95% CI: 1.009, 1.033), and C, RR=1.018 (95% CI:
1.003, 1.032) being positively significant. However, region B remains
negatively significant, RR=0.981 (95% CI: 0.965, 0.998). The total
cumulative risk is positively significant, albeit much smaller than
observed using a smooth function of time, with RR=1.019 (95% CI:
1.001, 1.037).

Figure 1 shows the estimated RRs for mortality (with 95% CIs along
the 45 lags) for an increase in concentration of TSP of one IQR,
showing both the two-week clustering approach (solid line) and the
spline function of time approach (dashed line). The behavior follows
that of [1], (Figure 2), with the modifications discussed above. The
differences between the two are discussed further below. Figure 2
shows the cumulative effects of the same unit exposure. In Figure 1 we
marked the regions A, B, and C, where the RRs have the same sign
(positive or negative). In addition, we used vertical lines to emphasize
their boundaries.

Figure 2: Total cumulative relative risk for mortality of exposure to
TSP, along the considered lags for regions A, B and C as in Figure 1.
Again, the solid line is the case-crossover result, and the dashed line
is the spline smoother result.

Discussion and Conclusions
In this work we analyzed mortality displacement with the goal of

estimating the effect of air pollution, adjusting for this mechanism
using the DLNM technique. We used data from the public domain
(provided by the second author of [1]) and although the set used
appears to be not quite identical to that used by Zanobetti et al. [1], it
is close enough for the results to be comparable. Our results are quite
different for the case where we used case-crossover (clustering) models
with clusters composed of 14 and 21 days. In these models “time” is
managed by cluster structures with two and three points for each day
of the week, respectively. The overall effect (A+B+C; RR=1.019, 95%
CI: 01.001, 1.037) is positive and statistically significant, but

significantly lower than [1], which gave RR=1.067 (1.038, 1.096). We
obtained negative and statistically significant results for region B
under both divisions; that of [1] and the same algorithm applied to our
approach. The regions are quite different between the two, with our
approach having a significantly larger number of lags with negative
risk. This can partially be attributed to the overall reduction in
estimated risk (shifting the entire curve downward) and partially to a
shape change which we suspect to be data-driven.

In our second (baseline) approach, we used a more traditional GLM
with a cubic regression spline controlling for long timescale variation
(using 33 df to match [1]). We obtained somewhat similar results to
those published previously (Table 2) [1], albeit with increased levels.
As the models used were not identical (we used fixed-df splines versus
the penalized option), and as the authors of [1] did not use the slightly
more flexible DLNM framework (as it had not been developed), the
variation between the results is understandable. The relative risks for
the second approach remain comparable to that of [1] despite the
difference in implementation, allowing us to compare our two
implemented models more directly (and thus, by proxy, to the
previously published results). As our second approach is nearly that of
[1], by dropping the smooth function of time and replacing the
mortality counts by their clusters instead (our first approach), we
obtain different results which can be attributed to the change in time
control.

In this study, positive and statistically significant short-term effects
on daily mortality in Milan, Italy were observed in relation to
exposures to ambient air pollution. The DLNM technique allows us to
effectively quantify the effects of delayed exposure over time. The goal
of this work was to highlight a new technique (case-crossover time
control within a DLNM framework) and to use it in the domain of air
pollution and related health effects. In addition, we provided a SAS
procedure (PHREG) which implements the case-crossover technique
(Appendix 2). As was recently observed, some realizations of this
methodology may generate bias for different options in the procedure
for ties [15]. In the presented code each case and its controls are
considered as separate strata. As was investigated in the work [15]
such approach generates proper results for all options.

As the new case-crossover time control approach provides reduced
results to those using a more traditional time smoother, an open
question for future research is what effect causes the reduction. As the
total cumulative effect results in [1] (and those provided by our second
approach with a 33 df time smoother) are more positive than those of
our first (CC) approach, our current hypothesis is that whatever
portion of the time variation is controlled for by the CC approach
(essentially, removed from consideration) for the Milan data is more
strongly related than the residuals. The approximate 33 df used for the
time smoother in [1] fails to control for seasons in any significant way
[16], so we suspect that a seasonal association between TSP and
mortality may be responsible for the difference. Note that this decrease
in risk is not generalizable, as it will depend on the particular city of
interest and its geography and climate–some cities may well have an
increase in total cumulative effect when seasonality is controlled more
completely.
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