
Volume 5 • Issue 2 • 1000148J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Shivendra et al., J Inform Tech Softw Eng 2015, 5:2
DOI: 10.4172/2165-7866.1000148

Research Article Open Access

Distributed Deadlock Detection Technique with the Finite Automata
Shivendra Kumar P*, Hari Krishna T and R. K. Kapoor

Department of Computer Application and Research, National Institute of Technical Teachers Training and Research, Bhopal, India.

*Corresponding author: Shivendra Kumar P, Department of Computer Application
and Research, National Institute of Technical Teachers Training and Research,
Bhopal, India, Tel: 0755 266 1600; Email: shivendrapandey786@gmail.com

Received March 27, 2015; Accepted May 05, 2015; Published May 20, 2015

Citation: Shivendra Kumar P, Hari Krishna T, Kapoor RK (2015) Distributed
Deadlock Detection Technique with the Finite Automata. J Inform Tech Softw Eng
5: 148. doi:10.4172/2165-7866.1000148

Copyright: © 2015 Shivendra Kuma P, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Keywords: Distributed systems; Deadlock detection algorithm; Wait
for graph; Finite automata.

Introduction
In a distributed system, deadlock is a situation which occurs when

a process enters a waiting state because a resource requested is being
held by another waiting process, which in turn is waiting for another
resource [1]. If the process is unable to get full filled their request
forever because the resource is requested by it is being held by another
process, then the system is said to be in a deadlock [2]. Two common
places where deadlocks may occur are with processes in an operating
system (distributed or centralized) and with transactions in a database
[3]. Deadlock is a common problem multiprocessing systems, parallel
computing and distributed systems, where software resources and
hardware resources are used to perform the task [4]. There are two
major types of model available for the deadlock that is the AND model
(also called the multiple-resource model), a process is allowed to make
several resource requests, and it is blocked until all of the requests are
granted. Processes in this model can be involved in several deadlock
cycles at once [5,6]. In the OR model (also called the communication
model), a process makes several requests and is blocked until any one
of them is granted [6]. The AND-OR model allows a combination of
request types, such as a request for resource X and either Y or Z [5]. Our
proposed model is based totally on the AND model.

Necessary Conditions for Deadlock
Mutual exclusion

There must be some non-sharable resource. That only one process
can access at a time [7].

Hold and wait

A process is holding a resource and requesting an additional
resource which already held by other processes [5].

Ti-h (RI and Ti-w Rj) Where

Ti: Transaction i

Ri, Rj: Resources respectively ith and jth

h: resource in hold.

w: resource in wait.

No preemption

A resource can be only when the process has completed (voluntarily) its task.

Circular wait

A process must be waiting for a resource which is being held by
another process, which in turn is waiting for the first process to release
the resource [8].

Ti→Tj→Tk→Ti

Under deadlock detection technique, the manager allows for the
system to occur deadlock. Then apply the detection algorithm to detect
that a deadlock has occurred or not, occurred and subsequently it is
recovered if there is a deadlock in the system [8].

Detecting a deadlock that has already occurred is easily possible
since the resources that each process has locked and/or currently
requested are known to the resource scheduler of the operating system.
After a deadlock is detected, it can be recovered by using any of the two
methods:

Process termination

When one or more processes involved in the deadlock maybe
aborted or process has been killed. We can choose to abort all processes
involved in the deadlock on the basis of utilization of CPU, resources
held by the process and etc.

Resource preemption

This is the way to remove the deadlock from the system. So in
this way Resources allocated to different processes is preempted and
allocated to other processes until the deadlock is broken [5]. There are
several variations to these algorithms that seek to optimize different
parameters like, number of messages, length of messages, and frequency
of detection.

In the proposed algorithm we have taken a number of probe

Abstract
In the distributed, system deadlocks is a fundamental problem. A process may request resources in any order,

which may not be known in advance and a process can request resource while holding others. Deadlocks can occur if
the sequence of the allocations of resources to the processes is not controlled. Fast and efficient deadlock detection
is very challenging and difficult task in distributed systems. In this paper distributed deadlock is detected by the
distributed control manager. We proposed a distributed deadlock detection algorithm based on the finite automata to
detect deadlock in a distributed environment. In this proposed solution we draw the wait for graph for the distributed
transaction with the help of finite automata. Our proposed algorithm avoids the transmitting massage to other nodes;
it is based on the expansion of an unvisited node in the wait for graph with the help of finite automata. This finite
automaton based deadlock detection technique works fast and takes less number of comparisons to detect the
deadlock in the wait for graph.

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering

Volume 5 • Issue 2 • 1000148J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Shivendra Kumar P, Hari Krishna T, Kapoor RK (2015) Distributed Deadlock Detection Technique with the Finite Automata. J Inform Tech
Softw Eng 5: 148. doi:10.4172/2165-7866.1000148

Page 2 of 4

sends a string containing the victim’s identifier to S.

•	 Examine each remaining cycle that contains the node External.
If the transaction identifier of the node External is waiting for is
greater than the node that waits for external, then

a.	 Transform the cycle into a string, which starts with “EX” and
terminates with a node identifier that identify the node waiting
for External on the site.

b.	 Send the string to each site which the terminating node in the
string is waiting for.

•	 O (n (n-1)/2) messages

•	 O (n) message size

•	 O (n) detect deadlock

Chandy-Misra-Haas Edge-Chasing Algorithm	
The scheme proposed by Chandy, Misra and Haas uses local WFGs

to detect local deadlocks and probes to determine the existence of
global deadlocks [4]. Chandy-Misra-Haas edge-chasing algorithm uses
a probe message (i,j,k) deadlock detection initiated for process ‘Pi’and
send to and is sent by the site of ‘Pj’ to the site of Pk [4].

Deadlock initiated at pi: If

Pi is locally dependent on itself, then declares a deadlock else

send probe (i, j, k) to home site of Pk for each j, k such that all of
the following hold

Pi is locally dependent on PjPj is waiting on Pk

Pj and Pk are on different sites

Receipt of probe (I, j, k) by node of Pk: check the following
conditions:

Pk is blocked dependentk(i)=false

(Pk does not yet know that Pi is dependent on Pk)\Pk has not
replied to all requests of Pj

if these are all true, do the following

setdependentk(i)=true(Pk now knows that Pi is dependent on Pk)
if k=i declare that Pi is deadlocked

else

send probe (i,m,n) to the home site of Pn for every m and n such
that the following all hold

Pk is locally dependent on Pm

Pm is waiting on Pn

Pm and Pn are on different sites

Performance of Chandy-Misra-Haas edge-chasing algorithm

•	 m(n-1)/2 messages for m processes at n sites

•	 3-word message length

•	 O(n) delay to detect

The Proposed Algorithm
In our proposed algorithm, we have devised an approach to detect

the deadlock with the help of finite automata. In this approach the
process id is taken as an input (sigma) and the process is as a state. With

massage comparisons and size of the message as a parameter to optimize
the deadlock detection technique. In the paper, we have used the state
transitions to find out the deadlock in the distributed system. We also
have avoided sending a triple probe massage [4]. The number of massage
comparisons with probe message is more and it is difficult to manage
the probe massage [6]. In this paper we have shown that with the use of
finite automata concept we need not to send the probe message in the
outgoing link. In the Chandy Misra Haas model the concept of sending
the number of probe massage has been used to find out deadlock and so
the number of probe massage and their comparison is high in the AND
model. In our proposed algorithm, there is no overhead for sending
and waiting for the probe massage for the initiator and there is a very
less number of transition it takes to detect the deadlock in the system
because with the use of finite automata in the proposed algorithm, this
decrease not only the comparisons of massages but also remove the
concept of probe massage overhead.

Literature Survey
In the distributed deadlock detection techniques, there are many

algorithms in practice. Some widely used algorithms are Obermarck’s
Path Pushing Algorithm, Chandy-Misra-Haas Edge-Chasing Algorithm

Obermarck’s Path-Pushing Algorithm
In the Path Pushing algorithm the information about the global

wait for graph is distributed in the form of paths from one site to
another site [9]. In this algorithm, there is number of Processes (T1,
T2, T3...... TN) and There is a special virtual node Ex. The transaction
is totally ordered. The following steps show the process of Obermarck’s
path-pushing algorithm:

For each site S,

•	 Construct a wait-for-graph using the transaction-to-transaction
wait-for relationships.

•	 Receive any strings of nodes transmitted from other sites and
add them into the wait-for-graph.

a.	 For each transaction identified in the string, create a node of the
TWFG if none exists at this site.

b.	 For each transaction identified in the string, starting with
the first, create an edge to the node representing the next
transaction in the string.

•	 Create wait-for edges from EXTERNAL to each node
representing a transaction’s agent that is expected to receive on
a communication link.

•	 Create wait-for edges to EXTERNAL from each node
representing a transaction’s agent that is expected to send on a
communication link.

•	 Analyze the resulting graph, listing all elementary cycles.

•	 Select a victim to break each cycle that does not contain the
node external. As each victim is chosen for a given cycle,
remove all cycles that include the victim.

a.	 Site must remember the transaction identifier of the victim
such that it can discard strings received involves the victim.

b.	 If the victim transaction has an agent at this site, then the fact
that the transaction was chosen as a victim must be transmitted
to each site known to contain an agent of the victim transaction.
Otherwise, the site has to transmit the fact to each site that

Volume 5 • Issue 2 • 1000148J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Shivendra Kumar P, Hari Krishna T, Kapoor RK (2015) Distributed Deadlock Detection Technique with the Finite Automata. J Inform Tech
Softw Eng 5: 148. doi:10.4172/2165-7866.1000148

Page 3 of 4

the help of transition function, we draw the transition table; this helps us
to detect the deadlock in the distributed system [10-13]. In the process
of transition the unvisited or unexpended vertex/transition is selected
to visit and we fully expand (visits its neighbors through directededge)
the selected node/transition. And again one of the unvisited nodes from
thetransition table is selected. If any node/transition has been visited
once, we need not to explore it further. The process of expansions of
vertices/transition is repeated until either we get the deadlock in the
transition table or all the nodes have been expanded. A flag value has
been given to the starting node of the transition so whenever we have
fully expanded a node (visited all its neighbours through direct edge),
we check the flag value to decide whether there is a deadlock in the
system or not. If we do not get the deadlock for the first time, then
we take the second node and repeat whole process for this node also.
Continue the same process for all available nodes in the distributed
system.

This is illustrated with the help of following example: Suppose we
have 10 resources (A,B,C,D,E,F,G,H,I,J) and

4 Processes (P0, P1, P2, P3)

Here h denotes resource in hold and w denote wait for the resource.
With reference to figure 1 below:

P0—h→A, P0—w→C;

P1—w→A, P1—h→B, P1—w→D;

 P2—h→C, P2—w→H, P2—h→J;

P3—w→B, P3—w→F, P3—h→H, P3-h→G;

P4—w→E, P4—f→F;

P5—h→D, P5—h→E, P5—w→I;

P6—h→I, P6—w→G, P6—w→J;

In this proposed algorithm the wait for graph is based on transition
input and current state.

Here we have taken the transition input from the resource allocated
process, for which the current process is in waiting state (Figure1).

Distributed Deadlock Detection
In this proposed algorithm we have used distributed control

system to detect the deadlock where the wait for graph (WFG) is
spread over different sites. Any site can initiate the deadlock detection
process by constructing a global wait-for graph from local wait-for
graphs at a deadlock detector or by a distributed algorithm like edge
chasing [14,15]. The control manager will decide when to take the
decision to go for detecting the deadlock. It might be based on some
threshold value for the CPU utilization, throughput, and/or some other
parameter, or when the system is irresponsive. A distributed system
is an environment where a number of heterogeneous machines are
running parallel and performing the task, so when request are made in
the distributed environment, these machines uses mutually exclusive
resource so sometimes for a resource it is possible that one process
using it and another process for the same resource. So in the distributed
system, it is very difficult for the distributed system manager to manage
the resource. So while keeping one resource and waiting for the other
resource will lead to the wastage of resource and processor utilization
too. Some it is also possible where there are more than one process
holding a resource and waiting for another which is held by another
process and the other process is also waiting for the resource that is held
by the first process; under such situation deadlock situation occurs.

This type of situation is very common in the distributed environment.
We have taken an example of distributed systems; in the example there
are four machines that are running in the distributed environment,
fashion and processes are requesting the resources from the distributed
manager and distributed manager grant them the required resources
(Figure 2). In our algorithm we have setup a flag value with the initiator
of the transition table. So every time when we fully expand (visit all the
outgoing edges) the process we check the flag value .And according to
the flag value we decide the deadlock. If there is change in the flag value
then it indicate the deadlock and if there is no change in the flag value
then check with the others.

Distributed deadlock detection algorithm:

M (Q, δ, Σ)

Q=Set Of Processes;

Q=P1, P2………….Pn;

Σ=Set Of Input Symbol;

Σ=1, 2,…n;

δ=Transition Function

δ: Q × Σ→Q

Figure 1: Wait for graph for distributed systems.

Figure 2: Transition table for process P0.

Volume 5 • Issue 2 • 1000148J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Shivendra Kumar P, Hari Krishna T, Kapoor RK (2015) Distributed Deadlock Detection Technique with the Finite Automata. J Inform Tech
Softw Eng 5: 148. doi:10.4172/2165-7866.1000148

Page 4 of 4

Step1: Select a process (Qi);

Step2: Initially create a matrix of size 1 × Σ;

Qi × Σ;

Where: Qi is the selected state for deadlock detection;

Initialize: Flag=0: for process Qi;

Step3: Make transitions for Qi,

We have transition function

δ: Q × Σ→Q

δ: Qi × Σ→Q

Repeat step 3 for All Σ for state Qi;

Step 4: Select one of the unvisited process Qk to visit, from the Qi;

Select a state from

δ: Qi × Σ→Qk;

We have transition function:-

δ: Q × Σ→Q

δ: Qk × Σ→Q

For all Σ state Qk;

If (Qk × Σ→Qi)

{Set flag=1; Go to step 6;}

Else if (there is a unvisited process) Go to step 4;

Else go to step 7;

Step 6: report there is deadlock,

Go to step 8;

Step 7: report there is no deadlock,

Go to step 8;

Step 8: exit;

Performance of Proposed Algorithm
The time complexity of our proposed algorithm is based on number

of process ‘n’ in the distributed system. Our proposed algorithm takes
less number of comparisons in average case and in best case it takes
very less comparisons [13-16].

Analysis of Comparisons to Find Out the Deadlock in
the System

For the initiator’s transmission there is zero comparison. Otherwise
when we select one of the processes to visit and after transmitting all the
transitions, we check two things,

1.	 Is there is change in flag value; if yes then report deadlock

2.	 Else (go for another comparison) If the flag value is not changed
but there is some process to visit then go and select another
process and visit it. Else report deadlock

Here for the 1st process no comparison is made and for remaining
(n-1) processes it will take 2 comparisons each time,

Thus total number of comparisons is, 0+2(n-1) i.e. 2(n-1)

Analysis of Number of Transmissions to Find Out the
Deadlock in the System

First process can take transmission up to (n-1) nodes, and second
can take all the transmission (n-2) and third can take all the transmission
(n-3) and the n-1st node will take 1 transmission so it will take [13].

(n-1)+ (n-2) + (n-3) +…………………….+ 1=n(n-1)/2 Therefore,
total number of transmission are n(n-1)/2

For summary of performance of proposed algorithm, refer table at
appendix 1. Since we have not used any message thus message size is zero.

Conclusion
In this paper we have investigated Obermarck’s path pushing

algorithm, Chandy-Misra-Haas edge-chasing algorithm for distributed
deadlock detection techniques [15-16]. We have proposed a deadlock
detection algorithm in distributed environment. Our deadlock
detection algorithm is totally based on finite automata concept so
execution of algorithm is based on the transition function of detection
algorithm. By this algorithm, we have avoided the phantom deadlock
problem in the distributed environment and so our deadlock detection
approach detects only the real deadlocks and reports this. This proposed
algorithm is more efficient due to reduced overheads.

References

1.	 Farajzadeha N, Hashemzadeha M, Mousakhania M, Haghighata AT (2005)
An Efficient Generalized Deadlock Detection and Resolution Algorithm in
Distributed Systems. The Fifth International Conference on Computer and
Information Technology. Shanghai.

2.	 Yeung CF, Hung SH , Lam KY, Law CK (1994) A New Distributed Deadlock
Detection Algorithm ForDistributed Database Systems. Browse Conference
Publications 1: 506-510.

3.	 Brzezirislti J, Helary JM, Raynal M (1995) Deadlocks in Distributed Systems:
Request Models andDefinitions. IEEE 186-193 Cheju Island.

4.	 Chendy M, Misra J, Haas LM (1983) Distributed Deadlock Detection.
ACMTmns. Comput Syst 1: 143-156

5.	 Holliday JL, Abbadi EA (2000) Distributed Deadlock Detection. University of
California at Santa Barbara.

6.	 Lee S, Lee Y A (1999) Distributed Algorithm for Deadlock Detection under OR-
request Model. Conference: Reliable Distributed Systems, IEEE.

7.	 Obermarck, R (1982) Distributed Deadlock Detection Algorithm ACM Trans.on
Database Systems

8.	 Chen S, Deng Y, Attie P, Sun W (1996) Optimal deadlock detection in
distributed systems based on locally constructed wait-for graphs. Proc. Int’l
Conf. Distributed Computing Systems. IEEE, pp. 613-619.

9.	 Knapp E (1987) Deadlock Detestion in Distributed Database. ACM Comp.Sur
19: 302- 328

10.	Ajay DK, Singhal M (1997) Distributed Detection of Generalized Deadlocks.
IEEE 553-560 Baltimore.

11.	Kawazu S, Minami S, Itoh K, Teranaka K (1979) Two-Phase Deadlock Detection
Algorithm in Distributed Databases. IEEE 5: 360-367.

12.	Kshemkalyani A, Singhal M (1989) Deadlock detection in distributed systems.
IEEE Computer 22: 37-48.

13.	Lee S (2002) Fast Detection and Resolution of Generalized Distributed
Deadlocks. IEEE, pp. 429-436.

14.	Lee S (2004) Fast, Centralized Detection and Resolution of Distributed Deadlocks
in the Generalized Model IEEE Trans. On Software Engineering 30: 561-573.

15.	Shyam B, Dhamdhere DM (1990) A New PriorityBased Probe Algorithm for Distributed
DeadlockDetection,” Indian Inst. of Technology, Bombay, Technical Report.

16.	Roesler M, Burkhard WA (1989) Resolution of Deadlocks in Object-Oriented
Distributed Systems. IEEE Trans. Computers 38: 1212-1224.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1562667&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F10445%2F33169%2F01562667.pdf%3Farnumber%3D1562667
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1562667&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F10445%2F33169%2F01562667.pdf%3Farnumber%3D1562667
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1562667&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F10445%2F33169%2F01562667.pdf%3Farnumber%3D1562667
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1562667&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F10445%2F33169%2F01562667.pdf%3Farnumber%3D1562667
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=369249
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=369249
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=369249
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=524984
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=524984
http://www.cs.utexas.edu/users/misra/scannedPdf.dir/DistrDeadlockDetection.pdf
http://www.cs.utexas.edu/users/misra/scannedPdf.dir/DistrDeadlockDetection.pdf
http://www.cse.scu.edu/~jholliday/dd_9_16.htm
http://www.cse.scu.edu/~jholliday/dd_9_16.htm
http://www.researchgate.net/publication/3823881_A_distributed_algorithm_for_deadlock_detection_under_OR-request_model
http://www.researchgate.net/publication/3823881_A_distributed_algorithm_for_deadlock_detection_under_OR-request_model
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=508012&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D508012
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=508012&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D508012
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=508012&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D508012
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=603415&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D603415
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=603415&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D603415
http://dl.acm.org/citation.cfm?id=1286751
http://dl.acm.org/citation.cfm?id=1286751
http://dl.acm.org/citation.cfm?id=74716
http://dl.acm.org/citation.cfm?id=74716
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=994328&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D994328
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=994328&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D994328
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1324644&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F32%2F29319%2F01324644.pdf%3Farnumber%3D1324644
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1324644&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F32%2F29319%2F01324644.pdf%3Farnumber%3D1324644
https://scholar.google.co.in/scholar?q=A+New+PriorityBased+Probe+Algorithm+for+Distributed+DeadlockDetection%2C&btnG=&hl=en&as_sdt=0%2C5
https://scholar.google.co.in/scholar?q=A+New+PriorityBased+Probe+Algorithm+for+Distributed+DeadlockDetection%2C&btnG=&hl=en&as_sdt=0%2C5
http://www.computer.org/csdl/trans/tc/1989/08/t1212.pdf
http://www.computer.org/csdl/trans/tc/1989/08/t1212.pdf

	Corresponding author
	Abstract
	Keywords
	Introduction
	Necessary Conditions for Deadlock
	Mutual exclusion
	Hold and wait
	No preemption
	Circular wait
	Process termination
	Resource preemption

	Literature Survey
	Obermarck’s Path-Pushing Algorithm
	Chandy-Misra-Haas Edge-Chasing Algorithm
	The Proposed Algorithm
	Distributed Deadlock Detection
	Performance of Proposed Algorithm
	Analysis of Comparisons to Find Out the Deadlock in the System
	Analysis of Number of Transmissions to Find Out the Deadlock in the System
	Conclusion
	Figure 1
	Figure 2
	References

