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Introduction
Systemic lupus erythematosus (SLE) is a prototypic autoimmune 

disease in humans. With a female/male prevalence ratio of 9 to 1, SLE 
is characterized by increased proinflammatory cytokines, formation 
of autoantibodies and immune complexes that affect multiple organ 
systems [1]. In addition to abnormalities in peripheral tissues and 
organs, up to 75% of SLE patients develop central nervous system (CNS) 
manifestations, collectively named neuropsychiatric SLE (NP-SLE) or 
CNS lupus. Common psychiatric abnormalities include anxiety and 
cognitive dysfunction [2]. However, the etiology and pathogenesis of 
SLE remains largely unknown. Nevertheless, a role of type I interferon 
(IFN) has been suggested in the pathogenesis of SLE by studies both 
from humans and animal models [3]. For example, gene chip analyses 
reveal a significantly enhanced transcriptional profile in the cells 
prepared from SLE patients in response to IFN-α (a major form of type 
I IFN) [4,5]. Meanwhile, suppression of type I-IFN signaling led to a 
marked attenuation of autoimmune development and kidney damages 
in lupus-prone NZB mice [6,7].

Lupus-prone mice such as NZB, NZBWF1 and MLR/lpr exhibit 
significantly increased anxiety profiles on EPM test and have been used 
as a model for understanding the etiopathogenesis of anxiety disorders 
in SLE patients [8,9]. Genome-wide scan and linkage study revealed 
that the region harboring IFN-α genes on chromosome 4 in NZB mice 
is linked to the anxiety-like behavior on EPM test in NZB/NZW (New 
Zealand White) F1 mice [10]. Development of behavioral dysfunctions 
observed following chronic therapeutic treatment of IFN-α in human 
patient also suggests a pathogenic activity of this innate immune 
cytokine for behavioral dysfunction [11]. To directly examine the 
contribution of type I-IFN signaling to the emotional behavioral 
dysfunction in lupus mice, the behavioral consequence of ablation of 
type I-IFN receptor (IFNAR) in female NZB mice was investigated. The 
impact of type I-IFN receptor deficiency on autoimmune status and 
tissue damage of NZB mice was also evaluated.

Materials and Methods 
Animals and sample collection

Breeding pairs of NZB/IFNARKO and control NZB mice were 
kindly provided by Drs. Argyrios N. Theofilopoulos and Dwight H. 
Kono at Scripps Research Institute and were used to produce NZB/
IFNARKO and NZB control mice respectively at our laboratory 
animal research center. Non-autoimmune control NZW mice were 
purchased from Jackson Laboratory (Bar Harbor, ME, USA). In 
addition to behavior test, mice were sacrificed for blood, spleen and 
kidney collection at different ages. Spleens were dissected and weighed. 
Kidneys were collected and paraffin-embedded sections were prepared. 
Serum was separated for collected blood and stored at -70°C until 
serologic analysis. Animal handling and experimental procedures were 
conducted in accordance with the National Institutes of Health (NIH) 
guidelines for animal care and use and approved by UMKC Institutional 
Animal Care and Use Committee (IACUC).

Verification of type I-IFN receptor depletion

IFNARKO mice were originally developed at Genentech Inc. (South 
San Francisco, CA) and were verified by PCR genotyping using DNA 
extracted from tails [12]. To further confirm functional deficiency of 
the IFNAR in IFNARKO mice, knockout and wild type mice were 
treated with a single dose of IFN-α (2 × 105 IU/kg) or vehicle by 
intraperitoneal injection. Livers were dissected and collected following 
the treatment. Poly (A+) RNA was extracted by an oligo (dT) cellulose 
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profound stimulation of the expression of these genes in wild type NZB 
mice (Figure 1). In contrast to NZB control, IFN-α challenge resulted in 
no stimulation of IFN-stimulated gene expression in NZB/IFNARKO 
mice because of the loss of functional type I-IFN receptor in these mice.

Similar to previous observation [8], a significant difference in both 
percentage of time in open arms and percentage of entries into open 
arms, two measures of anxiety-like behavior by elevated plus-maze 
(EPM) was found between autoimmune NZB and control NZW mice at 
12 weeks of age (Figure 2A left panel). Compared to non-autoimmune 
NZW mice, NZB mice showed a dramatic decrease in these two 
measurements by 71% (p<0.01) and 45% (p<0.01) respectively, 
indicating increased anxiety profile in lupus mice. Nonetheless, there 
were no significant differences between the two groups of mice in 
measurements of the general locomotor activity, the total number of 
arms entries and total number of beam breaks (Figure 2A right panel).

To our surprise, in comparison with the control NZB females, NZB/
IFNARKO mice did not exhibit any alterations in their performance on 
elevated-plus maze (Figure 2B left panel). The anxiety level measured 
by the percentage of time spent in open arms and the percentage of 
entries into open arms were not changed in NZB/IFNARKO versus 
control NZB mice. The results reveal that blockade of type I-IFN 
signaling has no impact on the emotional behavioral abnormalities that 
are developed in NZB female mice. Additionally, with no functional 
type IFN receptor, NZB/IFNARKO mice also did not alter locomotor 
activities measured by total aim entries and total beam breaks in EPM 
test (Figure 2B right panel).

To confirm the critical effect of type I-IFN on autoimmune 
development and kidney damage reported in previous studies [6,7], 

(Ambion, Austin, TX, USA) method and analyzed for expression of 
IFN-stimulated genes by RNase protection assay (RPA) as described in 
our previous studies [13].

Behavioral test

Anxiety profile was analyzed by elevated plus-maze (EPM), a well-
characterized paradigm for measuring anxiety in rodents as described 
in previous studies [14,15]. In brief, the mouse was placed individually 
in the center platform facing one of the open arms and allowed to freely 
explore the maze for a total of 5 min. Movements through the maze 
were detected by equally spaced photocells. Entries into each arm and 
times spent in each arm were captured via a Dell computer utilizing 
MotorMonitor software from Kinder Scientific (Poway, CA, USA). 
The total number of arms entries and total beam breaks represent 
locomotor activity while the percentage of time spent in open arms 
and percentage of entries into open arms are indicative of the anxiety 
profile, independent of the locomotor activity effect [16].

Autoantibodies detection

Anti-nuclear antibodies (ANA) (total immunoglobulin) were 
detected using an enzyme-linked immunosorbent assay (ELISA) kit 
from Alpha Diagnostic International (San Antonio, Texas, USA). The 
assay was performed for collected serum according to manufacturer’s 
instructions. In brief, after color development, the absorbance 
was measured at 450nm on a 96-well microplate reader (BioTek 
Instruments, Inc. Winooski, VT, USA). The optical absorbance (OD) 
value was calculated by subtracting the absorbance of the blank as the 
measurement of autoantibodies level similar to previous studies [8,17].

Renal histology

Periodic acid-Schiff (PAS) reagents (Sigma-Aldrich, St. Louis, 
MO, USA) stain basement membrane glycoprotein. PAS staining of 
kidney sections was used to assess basement membrane thickness 
and extracellular matrix deposition that are associated with 
glomerulonephritis [18]. Paraffin-embedded kidney sections (4μm) 
were stained in Schiff reagent for 15 min. After thorough washing 
in 0.55% potassium metabisulfite and tap water, the sections were 
counterstained in Harris’ hematoxylin. The stained sections were 
viewed under an Olympus BX60F5 photomicroscope (Olympus, 
Optical Co Ltd, Japan) and images were captured by an attached digital 
microscope camera (MIS, Inc. Villa Park, IL, USA).

Statistical analysis

Results are expressed as mean ± standard error of means (SEM). 
Two-tailed unpaired Student’s t-test was conducted for data analysis. 
p ≤ 0.05 was considered as statistically significant difference for all 
comparisons.

Results
The genotypes of NZB and NZB/IFNARKO mice were verified 

by PCR assay using extracted tail DNA. Since type I-IFN receptor is 
required for IFN-α action, we decided to analyze the expression of 
IFN-regulated genes following a high dose of IFN-α treatment as a 
functional assay to confirm the deletion of IFNAR in NZB/IFNARKO 
mice. These include several prototypic IFN-stimulated genes, dsRNA-
dependent protein kinase R (PKR), ubiquitin-specific proteinase 18 
(USP18), signal transducer and activator of transcription (STAT1), IFN-
induced 15 kDa protein (ISG15), guanylate-binding protein 3 (GBP3) 
and IFN-induced 10 kDa protein (IP10 or CXCL10) as described in 
our previous studies [13]. As expected, IFN-α treatment induced a 

 

Figure 1: Verification of IFNARKO mice. NZB/IFNARKO and wild type NZB mice 
were injected intra-peritoneally with a single dose of mouse IFN-α (2 × 105 IU/kg) 
or vehicle, and livers were collected 4 hours later for poly (A+) RNA preparation. 
One μg of poly (A+) RNA were analyzed by RPA. Each lane represents an 
individual animal.
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ELISA of anti-nuclear antibody (ANA) and periodic-acid Schiff (PAS) 
staining of kidney sections were performed to assess autoimmune 
response and basement membrane thickness, as well as extracellular 
matrix deposition associated with glomerulonephritis respectively. 
As shown in (Figure 3), thickened glomerular capillaries, thickening 

in the basement membrane and severe extracellular matrix deposition 
in glomeruli were substantially reduced in NZB/IFNARKO mice in 
comparison with the wild type NZB mice (Figure 3A). Autoimmune 
hemolytic anemia is another major clinical manifestation in NZB 
mice that is characterized by splenomegaly [19]. We then compared 
the differences in spleen weight between these two lines of mice. As 
expected, blockade of type I-IFN signaling by knocking out its receptor 
dramatically reduced splenomegaly, from 480 mg in NZB mice to 180 
mg in NZB/IFNARKO mice close to those from non-autoimmune 
control animals (Figure 3B). Serologic analysis revealed a decrease in 
serum ANA level by 26% in NZB/IFNARKO mice compared to NZB 
control mice (p = 0.07) (Figure 3C). Together, the results confirmed an 
importance of type I-IFN signaling in the development of autoimmunity 
and kidney damage [3,6].

Discussion
The present study confirms that disruption of type I-IFN signaling 

reduces autoimmune development and renal damage in autoimmune 
NZB mice. Significant attenuation of the autoimmune response 
and tissue inflammation in NZB/IFNARKO mice is detected by 
amelioration of glomerulonephritis, blockade of splenomegaly and 
decreased levels of serum ANA. Such observation provides further 
support for the importance of type I-IFN in the pathogenesis of 
autoimmune development and kidney injury [3]. Nevertheless, despite 
the reports of type I interferon for autoimmune-induced psychiatric 
abnormality developed in SLE patients [20] and lupus-prone mice 
[10], inhibition of type I-IFN signaling by knocking out its receptor 
does not change the performance of these mice on elevated-plus maze. 
NZB/IFNARKO mice exhibit an anxiety profile that is similar to those 
displayed in control NZB mice. The finding suggests that type I-IFN 
signaling is not required for the increased anxiety profile developed 
in these autoimmune mice. Nonetheless, previous studies reported 
that lupus-prone mice develop behavior changes in parallel with the 
autoimmune process, suggesting that behavioral dysfunctions are the 
consequence of autoimmune disease [8,9].

The importance of type I-IFN for anxiety-like behavior was detected 
in autoimmune NZB/NZW F1 mice [10]. Such findings are supported 
by elevated anxiety profile following chronic IFN-α treatments in 
humans [21], mice [10] and rats [22]. The reasoning for the observed 
discrepancy for the role of type I-IFN signaling in behavioral deficits 
in lupus-prone mice is unknown. However, a number of factors may 
contribute to the opposite observations. These include 1) different 
anxiety paradigms were used in different studies [22]; 2) in addition 
to type I-IFN, other innate immune mediators such as tumor necrosis 
factor-α and interleukin-1, which can also contribute to development of 
anxiety in autoimmune lupus mice [21]. On the other hand, conventional 
transgenic mice with brain-targeted expression of transgene may 
change programmed brain development that results in behavioral 
alterations. In this regard, further investigation is warranted in order to 
confirm the etiopathogenic role for type I-IFN in autoimmune lupus as 
well as psychiatric disorders.

Recent clinical investigations have detected a possible relationship 
between autoantibodies including anti-ribosomal P (anti-P), anti-
phospholipid or anti-NR2 glutamate receptor antibodies and 
neuropsychiatric manifestations of SLE in humans [23-25]. There was 
a report that the IgG prepared from lupus patient’s cross-reacts with 
dsDNA and the N-methyl-aspartate receptor (NMDA) receptor [26]. 
The antibodies, when injected into the mice, caused neuronal apoptosis 
and elicited learning deficits [27,28]. Treatment of pregnant mice with 
the antibody against the NR2-specific NMDA receptor can disrupt the 

 

Figure 2: Disruption of type I IFN signaling does not improve the performance of 
lupus mice in the elevated plus-maze (EPM) test. Mice were tested on the EPM 
for 5 minutes at 12 weeks of age and the percentage of time spent in open arms, 
the percentage of the entries into open arms, the total number of arms entries 
and the total number of beam breaks was compared between two groups. A. 
Female NZW and NZB mice (n = 10, **: p < 0.01); B. Female NZB and NZB/
IFNARKO mice (n = 8).

Figure 3: Blockade of type I IFN signaling attenuates autoimmune development 
and kidney damage in lupus mice. A. Representative kidney sections from 
9-month old NZB and NZB/IFNARKO mice stained with PAS and counterstained 
with hematoxylin. The arrows reveal PAS stained thickened glomerular capillaries 
(Magnification: ×400); B. Spleen weights of NZB and NZB/IFNARKO mice at 9 
months of age (n = 5-6; **: p < 0.01); C. Serum anti-nuclear autoantibodies 
(ANA) levels analyzed by ELISA at 14 weeks of age (n = 8).
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development of the neocortex in the fetal brain and led to subsequent 
cognitive deficits in adult offspring [28]. Various autoantibodies against 
host molecules may cross the disrupted blood-brain barrier due to the 
inflammatory process or the uteroplacental barrier and eventually lead 
to the functional and/or structural damage that accounts for the CNS 
manifestations of SLE [27,29].

It should be pointed out that other than autoantibodies against 
nuclear antigen (ANA) and double-stranded DNA (anti-dsDNA) 
detected in autoimmune lupus mice [19], it remains largely unknown 
whether any autoantibodies specific against neural cells and nervous 
tissue is developed in SLE-prone NZB mice. Therefore, future 
development of similar assays to detect suspected autoantibodies 
against neurons or/and glia cells in mice will shed the light on the 
contribution of specific autoantibodies to the anxiety-like behavior 
manifested in these autoimmune mice.

Conclusion
In summary, our findings from this study demonstrate while type 

I-IFN signaling is critical for autoimmune formation and inflammatory 
damage in lupus-prone mice, the unchanged anxiety-like behavior
detected by elevated plus maze in NZB/IFNARKO mice indicates a
type I IFN-independent mechanism for behavioral dysfunction in these 
autoimmune mice.
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