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Introduction 
A chlorophyll d-dominated cyanobacterium Acaryochloris marina 

was accidentally discovered by Miyashita, one of the authors of this 
review.  A colony of ascidians, Lissoclinum patella is a well known 
host of Prochloron.  The Prochloron cells were squeezed out from the 
ascidians, inoculated in a seawater-based IMK medium.  Though the 
Prochloron cells divided one or two times, they died within a few weeks, 
and the samples were left as it was.  More than one month later, small 
yellowish-green colonies like green algae were found at the bottom of 
the wells.  The microalga was ellipsoidal with 1-2 μm in length; smaller 
than Prochloron in ascidians (spherical with 10-30 μm in diameter).  In 
December of 1993, the dominant pigment extracted from the microalga 
exhibited apparently the same retention time as that of Chl b on the 
reversed-phase HPLC elution profile.  The absorption spectrum of the 
“Chl b-peak” was completely different from that of Chl b (Figure 1), 
but the same as that of Chl d.  Here a new genus Acaryochloris, being 
unicellular cyanobacterium containing Chl d (Figure 1) as a major 
pigment, was established [1]. The molecular structure was confirmed 
by Mass and NMR analyses [2].  

    Chlorophyll f (Figure 1) was a new chlorophyll firstly reported 
by Chen et al. [3]. It was discovered in a methanolic extract of cells 
predominating in the enrichment culture of microalgae collected from 
Shark Bay stromatolites incubated under far red (FR) light. In the same 
period of time, a Chl f-producing cyanobacterium, strain KC1 (Figure 
2A), was also discovered and isolated from freshwater environment by 
Miyashita.  The discovery was also a fortunate accident, similar to that 
by Chen et al. in which the Chl f-producing cyanobacterium was a by-
product during the hunting of chlorophyll d-producing cyanobacteria. 
Until recent years, Chl d was thought to be only detected in the 
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cyanobacteria distributed in marine or salty lakes, since it had only been 
found in the cyanobacteria in the genus Acaryochloris, and the strains 
in Acaryochloris had only been isolated from saline environments but 
not from freshwater environments at all [4-7].  Actually, the strain A. 
marina MBIC11017 does not grow in freshwater media and requires 
sodium chloride for its growth at more than 1.5% (w/v) in the medium 
[2].  However, Chl d was detected in the sediment at the bottom of Lake 
Biwa, the largest freshwater lake in Japan [8]. The fact indicated that Chl 
d-containing microalgae exist in the freshwater lake.  We collected algal 
mats and lake water from a shore zone of Lake Biwa.  The samples were 
suspended in several media for freshwater algae, diluted and dispensed 
into cell culture plate or on agar plates.  Those culture/agar plates were
kept in an incubator with FR as the sole light source.  Our attempt to
isolate a Chl d-containing freshwater Acaryochloris sp. from Lake Biwa 
turned out to be a success (details will be reported elsewhere). After the 
isolation of freshwater Acaryochloris sp., Miyashita checked the culture/
agar plates, which were left for a long time in the incubator with FR
LED light, and found some cyanobacterial colonies that were different
from those of Acaryochloris sp. in color; being dark-blue-green rather
than yellow-green (Figure 2B).  Morphological features of the cells
were similar to those of Acaryochloris sp. in that the cell was unicellular, 
spherical to subspherical and aggregated (Figure 2A).  Cells of strain
KC1 were unicellular, coccoid to ovoid with 1.3-2.0 µm in diameter and 
1.3-3.0 µm in length. The cells tended to form macroscopic colonies
with extracellular mucilage in a liquid medium.  We expected that
the organism was a new Chl d-containing cyanobacterium which was
closely related to the genus Acaryochloris phylogenetically, however,
pigment analysis by means of HPLC showed that  the cyanobacterium
possessed no Chl d at all but Chl a as the major chlorophyll like the
common cyanobacteria (Figure 3).
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Abstract
In this review, we described the biological characteristics of a cyanobacterium Acaryochloris marina and a unicellular 

cyanobacterium strain KC1 and the possible photosynthetic systems of the cells based on the physicochemical 
properties of chlorophylls.  Strain KC1 as well as Acaryochloris spp. in addition to Halomiclonema hongdechloris 
should contribute the understanding of photosynthesis utilizing far red light.
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Nevertheless, an unusual chlorophyll was detected as a minor 
pigment, which showed typical two absorption peaks in the Soret (406 
nm) and QY (707 nm) regions in MeOH; they were clearly different 
from those of known chlorophylls.  We concluded that the pigment 
was a new chlorophyll that should be named “Chl f”.  We started 
mass culture of the cells for chemical characterization such as detailed 
spectral properties, molecular mass and chemical structure.  At around 
the same time, Chen et al. reported the discovery of Chl f  [3], and 
then named the Chl f producing cyanobacterium Halomicronema 
hongdechloris [9].  The minor chlorophyll found in strain KC1 was also 
identified as Chl f by Mass and NMR analyses [10].

Both newly found chlorophylls, Chls d and f, have significant 
characteristics which can absorb light in the FR region. Those Chls 
must provide new insights on the photosynthesis especially on the 
oxygenic photosynthesis using FR light. In this review, we would like 
to summarize the biochemical and physicochemical characteristics 
of Chls d and f in addition to the biological properties of Chls d- and 
f-containing cyanobacteria. We also discuss the possible mechanism 
for oxygenic photosynthesis using FR light.

Absorption spectra
 Chls a, b, d and f

Absorption spectra of Chls a, b, d and f in diethyl ether are shown 
in Figure 4.  As compared to Chl a, Chl b shows red-shifted Soret bands 
and blue-shifted weak QY bands, while the QY bands of Chls d and f are 
intensified and shifted to longer wavelengths.  The QX bands exhibit 
practically no intensity.  The ratios of Soret/QY band intensities show 
remarkable differences, 1.3 in Chl a, 2.8 in Chl b, 0.85 in Chl d and 
0.65 in Chl f.  The Soret band of Chl f is clearly split into two bands, 
most probably the so-called B-bands (longer wavelength) and η-bands 
(shorter wavelength).  So one can easily distinguish them with little 
difficulty by their absorption spectra.  We want to emphasize that one 
can easily distinguish Chl f from Chl d without spectrophotometer.  As 
seen in Figure 5, Chl f looks blue-green as Chl a, while Chl d light-green 
as Chl b; the naked eye is often powerful for color judgment. 

The inductive effects on the absorption wavelengths and intensities 
of QY-bands of chlorophylls strongly depend on the nature and 
position of substituent(s) on the macrocycle, due to the presence of 
two different electronic transitions polarized in the x and y directions 
(the axes of transition moments are depicted in Figure1) [11-16].  
Replacement of the electron-donating group, -CH3, on ring II of Chl a 
by the electron-withdrawing group, -CHO, yielding Chl b (Figure 6), 
causes the blue-shift and significant intense reduction of the QY-band.  
In contrast, replacement of -CH3 on ring I of Chl a by -CHO, yielding 
to Chl f, causes the red-shift and intensity increase of the QY-band.  A 
similar phenomenon is clearly seen in Chl d, where -CH=CH2 on ring 
I of Chl a is replaced with -CHO.  These observations indicate that it is 
a general feature that substitution by the electron-withdrawing group 
on ring II causes the blue-shift and intensity reduction of the QY-band 
and that the same substitution on ring I leads the opposite, namely, the 
red-shift and intensity increase of the QY-band [10].  

Pheophytin a 

     The Mg-free chlorophyll is called pheophytin (Phe).  First of all, 
we emphasize that only Phe a (Figures 1 and 6) is present and functions 
in natural photosynthesis, and Phes b, d and f have not been found at 
all.  In general, the more structured shape and red-shifted Soret band 
of Chls distinguish them from the corresponding Phes [10].  Removal 
of the central Mg increases the Soret and QX transition intensity, and 
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Figure1: Molecular structures of naturally occurring chlorophylls in oxygenic 
photosynthesis, according to the IUPAC numbering system.

Figure 2: : Cell properties of strain KC1. (A) Cells grown under the white light, 
(B) color and (C) absorption spectra of the strain KC1 cells incubated under the  
different light conditions; white, blue, red and far red (FR).  Isolated cells were 
cultured in BG-11 media using 50 mL or 100 mL conical flasks in stationary 
culture conditions, or using 100 mL flasks in aerobic culture conditions with 
aerating sterile air (0.05 L min-1).  All culturing flasks were incubated at 298 
K. Monochromatic light sources were blue (MIL-B18), red (MIL-R18) and FR 
(MIL-IF18) LEDs (SANYO, Tokyo, Japan), and a light source of white light was 
the fluorescent light FL8N (Toshiba, Tokyo, Japan).  Absorption spectra were 
measured by means of U-3900 spectrophotometer with φ60 integrating sphere 
(Hitachi, Tokyo, Japan) at room temperature. Cells were suspended in 20% 
polyethylene glycol (3,000 Da) aqueous solutions.
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hence the Soret/QY-band ratio noticeably gets high, e.g., in diethyl ether 
Phe a shows the ratio of 2.0 (Figure 4).  Pheophytin a has relatively 
strong and characteristic QX-bands in the region of 490-570 nm, and it 
is well resolved to the QX (0,0) and QX(1,0) transitions. The color of Phe 
a looks dark brownish-green (Figure 5), and hence the contamination 
of Phe a in a Chl sample is often noticeable even by the naked eye.  

Minor but key chlorophylls in Acaryochloris marina 
and the strain KC1
Chl a and Chl d’ in PS I of Acaryochloris marina 

     Although A. marina has Chl d as the dominant pigment, three 
minor chlorophylls, Chl d’, Phe a and Chl a, are present and function 
as key components in the reaction centers (RCs) of photosystem (PS) I 
and PS II [17].  Chlorophyll d’ is the 132-epimer of Chl d, and Phe a is the 
Mg-free Chl a (Figure 6).  Just as the Chl a/a’ for P700 in the common 
cyanobacteria (Figure 7A) [18,19], the primary electron donor of PS I 
in A. marina, P740, was assigned to a Chl d/d’ heterodimer (Figure 7B) 
on the basis of precise pigment analyses with HPLC [20-23], which was 
supported by Fourier-transformed infrared spectral study [24].  

     The primary electron acceptor, A0, in PS I of A. marina is not Chl 
d but Chl a (Figure 7B) [25,26] as the common cyanobacteria (Figure 
7A), supporting our hypothesis that Chl a or its derivative is a general 
feature of A0 in the PS I-type RCs in [20], while the reason why Chl a 
functions as A0 in the PS I-type RCs is still unclear.        

The homology of PsaA and PsaB between A. marina and other 
cyanobacteria is low [27], which may reflect the replacement of almost 
all Chl a by Chl d, also Chl a’ by Chl d’, in the PS I RC of A. marina 
[20-23]. The phylogenetic tree for PsaA/B shows that the branch length 
for the Acaryochloris is longer than the others, which means that the 
evolution rate of PsaA and PsaB in those cyanobacteria are faster than 
those in the common cyanobacteria [23].  The change of evolutionary 
rate in the protein with the same function is usually explained by the 
change of evolutional constraint of the protein.  The reason of the low 
homology is inferred as the replacement of Chl a by Chl d.

Chl a and Phe a in PS II of Acaryochloris marina

Three models for the special pair in the PS II RC of A. marina 
has been presented:  (1) a Chl a homodimer [17,28-32], (2) a Chl a/d 
heterodimer (Figure 7B) [21-23,33,34], and (3) a Chl d homodimer 
[35-38].  The Chl a homodimer model had been already denied, but 
there still remains controversy over two models, a Chl a/d heterodimer 
and a Chl d homodimer.   To confirm the pigment arrangement in the 
PS II RC of A. marina, X-ray structural studies are strongly awaited.
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Figure 3: HPLC chromatograms of the methanol extracts from strain KC1 
cells cultured under the different light conditions, far red (FR), red, blue and 
white. Chlorophylls and carotenoids were extracted with 100% methanol 
from strain KC1 cells and were injected into an ODS reversed phase HPLC 
column (Spherisorb 5 µm ODS2, 4.6 x 250 mm, Waters, UK). Pigments 
were eluted with water-methanol-acetone (0 to 10 min linear gradient 90% to 
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min-1 at 298 K, and were monitored with a Waters 2996 PDA detector (350-
800 nm).  Chromatograms were normalized with the peak height of Chl a 
(peak 6). Peak 1: mixoxanthophyll, peak 2&3: unknown carotenoid, peak 4: 
zeaxanthin, peak 5: chlorophyll f, peak 6: chlorophyll a, peak 7 echinenone, 
peak 8: β-carotene. 
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Light adaptation of A. marina and the strain KC1
The stoichiometric changes of Chl d/PS I, Chl d/PS II and PS 
I/PS II in the cells of A. marina 

Pheophytin a and the epimers of Chls a and d are powerful 
indicators for determining the antenna size and the PS I/PS II 
stoichiometry, because two Phe a molecules are present only in PS II, 
and one molecule of Chl a’ or d’ is present only in PS I  (see Figure 7).   

The molar ratios of Chl d/d’ and Chl d/Phe a in the cells grown 
under WF light (SWL in Figure 8) are 72 and 49, respectively, and these 
are 143 and 58 in the cells under the illumination of incandescent light 
(IC light; LWL in Figure 8) [39,41].  The ratio of Chl d/d’ in the WF-
cells is about half of that in IC-cells (Figure 8A), while the ratios of Chl 
d/Phe a in the WF- and IC-cells are almost the same (Figure 8B); the 
stoichiometries of Chl d/PS I, Chl d/PS II and PS I/PS II are calculated 
to be 72, 98 and 1.4 in the WF-cells, and 143, 116 and 0.8 in the IC-cells 
(Figure 8). 

The content of Chl a in A. marina varies according to light 
conditions [30,31,39,41], the molar ratios of Chl a/d’ and Chl a/Phe 
a in the WF-cells are 2.7 and 1.8, respectively, and these are 5.14 and 
2.11 in the IC-cells; at least one molecule of Chl a is present in each RC 
[21,22,39].  It is of interest to note that as illustrated in Figure 8C the 
change of PS I/PS II stoichiometry is small, 1.4 and 0.8, compared to 
other cyanobacteria including the strain KC1.
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Figure 6: Chlorophyll a and its derivatives found in natural photosynthesis.  Chlorophylls a’ and d’ function as the primary electron donors in PS I, Phe a 
as the primary electron acceptor in PS II, and Chl b as antenna. The function of Chl f has not yet been clarified.

Though Chl d is dominant in A. marina, pheophytin in A. marina 
is not d-type but  a-type, namely, Phe a (Figure 7B), like the Chl a-type 
cyanobacteria (Figure 7A) [16,17,20,21,23,30,36,37,39,40].  It has not 
yet been clarified why A. marina uses Phe a as the primary electron 
acceptor in PS II.  One of the reasons might be the use of a common 
electron acceptor, plastoquinone, which is supported in part by the fact 
that the reduction potential of Phe d (-0.63 V) in vitro is significantly 
less negative than that of Phe a (-0.75 V) [22], namely,  Phe d is less 
favorable for reducing plastoquinone.

Chl a’, Chl f and Phe a in the strain KC1 
In the KC1 cells, Chl a’ and Phe a are present as minor components 

as the common cyanobacteria, and Chl f is absent when incubated 
under white fluorescent (WF) light.  Neither Chl f’ nor Phe f is also 
detected at all.  The results indicate that Chl a’ and Phe a function as 
P700 and the primary electron acceptor of PS II, respectively, in the 
strain KC1 (Figure 7C) as in the common cyanobacteria (Figure 7A) 
[41] and that Chl f does not play as primary pair in PSI nor special pair 
in PSII.  A small amount of Chl f is detected only when the KC1 cells 
are grown under FR LED light.  It is of interesting to note that Chl f is 
not induced in the strain KC1 under WF light even if FR LED light is 
also used as additional light.  The function of Chl f in energy storage is 
under debate, because uphill energy transfer is needed to deliver the 
excitation energy to Chl a molecules in the RC [42].  Chlorophyll f may 
function as not an electron transfer component but an antenna part 
(Figure 7C).  
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The stoichiometric changes of Chl a/PS I, Chl a/PS II and PS 
I/PS II in the strain KC1 cells

Drastic color change was observed in the cells of KC1 acclimated 
under different light conditions as seen in Figure 2B.  As shown in 
Figure 2C, absorption spectra of the FR-cells show a clear shoulder 
over 700 nm, due to the presence of small amounts of Chl f.  The 
absorption spectral changes observed in strain KC1 resemble those in 
H. hongdechloris cells grown under white light or red light [9].

Strain KC1 showed characteristic Chl-based complementary 
chromatic adaptation (CbCCA) in addition to the common 
complementary chromatic adaptation (CCA) that is well known in a 
part of cyanobacteria. The cells grown under WF light were blackish-
green in color (Figure 2B). The cells grown under blue and red light 
showed reddish- and blue-green, respectively. It was identical to the 
common CCA, in which phycoerythrin absorbing light around 560 
nm as its peak was increased under the blue light and decreased under 

red light (Figure 2C). On the contrary, phycocyanin absorbing light 
around 630 nm as its peak was increased under red light. In addition 
to those phycobiliprotein-based CCA, strain KC1 showed further and 
additional adaptation under FR condition. The cells grown under FR 
light looked green rather than blue-green of the cells grown under 
red light (Figure 2B).  It was due to the decrease of phycocyanin, the 
increase of absorption around 450-500 nm, and the appearance of an 
additional absorption band around 720 nm (Figure 2C).     

HPLC chromatograms of methanol-soluble pigments extracted 
from the cells grown under the each light condition showed that 
only the cells grown under FR light contained Chl f and accumulated 
echinenone (Figure 3). This result showed that appearance of extra 
absorption in the cell grown under FR light was due to the production 
of Chl f as an extra chlorophyll, which might make strain KC1 possible 
to perform photosynthesis under FR light as a sole light source. 

The each content of Chl a’, Phe a and Chl f vs. Chl a is ca. 2.1%, 
0.6% and 0% in the WF-cells, while 2.1%, 1.6% and 5.3% in the FR-
cells; the stoichiometries of PS I/PS II were calculated to be 6.5 and 2.7, 
respectively, as shown in Figure 8C [41].  The molar ratios of Chl f/a’ 
(Chl f/PS I), Chl f/Phe a (Chl f/PS II)  and the stoichiometry of PS I/II 
in the FR-cells are 2.5 (2.5), 3.3 (6.6) and 2.7, respectively, suggesting 
that each PS I and PS II possesses ca. two Chl f molecules, which is 
supported in part by fluorescence experiments exhibiting the presence 
of Chl f in both PS I and PS II (S. Itoh, personal communication).  The 
results also indicate that the positions permitting the insertion of Chl f 
are severely restricted in certain protein(s).

Chlorophyll f in the cells of strain KC1 was reversibly induced and 
destructed. The accumulation of Chl f in the cells grown under WF 
light was started after the transfer of cell under FR light, and reached a 
plateau within two weeks under the continuous light condition (Figure 
9). The ratio of Chl f/Chl a increased from 0% to about 8% linearly. On 
the contrary, the loss of Chl f was rather faster than the accumulation, 
in which the ratio of Chl f/Chl a decreased from about 10% to about 
1% within five days after the transfer of the cells from under FR to WF 
light. After sixth day, the content of Chl f decreased slowly and did not 
reach to zero for 2 weeks. The reason why Chl f was not completely 
disappeared under WF light for 2 weeks is possibly due to the self-
shading effect by forming cell aggregates.

We had better pay attention that the emission spectrum of FR LED 
overlaps with the absorption spectra of the strain KC1 cells grown 
under white, blue or red light (Figure 2C), which is one indication 
that the KC1 cells in the absence of Chl f can absorb FR LED light by 
some Chl a molecules with longer wavelength absorption and that they 
may act as a trigger for Chl f biosynthesis.  The other possibility of the 
trigger for Chl f induction might be a presence of photoreceptors like 
cyanobacteriochromes or phytochromes.  Thus further studies are 
required to revel the molecular mechanism for Chl f induction and 
reduction.

Phylogenetic properties of a Chl f-containing cyanobacterium 
strain KC1

The SSU rRNA gene sequence of strain KC1 had 97.5% maximum 
identity (query coverage 99%, 1311/1344) with that reported as 
“Aphanocapsa muscicola 5N-04” [43]. Phylogenetic analysis based 
on the sequence indicated that strain KC1 formed a clade with some 
cyanobacteria including Aphanocapsa muscicola strains 5N-04 and 
VP3-03 [43] and Acaryochloris sp. JJ8A6 [44] which had a sister 
relationship to true Acaryochloris-clade (Figure 10). Strain KC1 was 
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Stoichiometries of Chl d/PS I and Chl d/PS II in A. marina (□) are calculated 
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wavelength light): white fluorescent light for A. marina and the strain KC1, 
yellow light for Synechococcus.  LWL (long wavelength light): incandescent 
light for A. marina, far red LED light for the strain KC1, and red light for 
Synechococcus.  Figure adapted from Akutsu et al. (2011).       

both morphologically and phylogenetically different from the firstly 
reported Chl f-containing cyanobacterium, H. hongdechloris [9].  H. 
hongdechloris is filamentous and it has only 92% identity of SSU rRNA 
gene sequence with that of strain KC1. The taxonomical consideration 
of strain KC1 requires further consideration, since it is not suitable 
to assign strain KC1 as Aphanocapsa or Acaryochloris based on the 
characteristics discussed here.

Redox potentials of Chl d and Chl f in vitro
Oxidation potential, Eox, of Chl d in acetonitrile is significantly 

higher than that of Chl a [22].  Chlorophyll f also has higher value than 

Chl a [10].  The order of Eox values, Chl b (+0.94 V vs. SHE) > Chl f 
(+0.92 V) >> Chl d (+0.88 V) >> Chl a (+0.81 V) seen in Figure 11, is 
accounted for by invoking the inductive effect of substituent groups 
on the macrocycle, because the redox potentials of chlorophylls are 
sensibly affected by the nature of substituent groups on the conjugated 
π-electron system [10,22,45,46].

The -CHO substituent on Chls b, d and f (Figure 6) is an electron-
withdrawing group (→CHO), and hence reduces the electronic density 
in their π-systems.  The replacements of -CH3 at C7 or C2 of Chl a 
by -CHO to yield Chl b or Chl f (Figure 6), respectively, cause the 
macrocycle to be electron poor, thus rendering the molecule less easily 
oxidized (Figure 11).  Replacement of -CH=CH2 at C3 of Chl a by 
-CHO to yield Chl d (Figure 6) makes the oxidation potential more 
positive than that of Chl a (Figure 11).  Thus Eox order becomes Chls 
b, d, f > Chl a, as mentioned above.  When one pays attention to the 
group of -CH3 at C7 of Chl d and the group of -CH=CH2 at C3 of Chl 
b or C7 of Chl f, the -CH3 moiety is more electron-donating (←CH3), 
thus making the macrocycle of Chl d more electron rich, and hence its 
oxidation potential less positive (Chls b, f > d > a).  As expected from 
the inductive effect of substituent groups, Chls b and f will show the 
almost the same oxidation potentials, though a little higher oxidation 
potential of Chl b than that of Chl f by 20 mV in Figure 11 cannot be 
explained from the primitive way used here.

As seen in Figure 11, Phe a has terribly high oxidation potential 
of +1.14 V [22], which is in line with electron density decrease on the 
π-system by replacement of magnesium, Mg, with more electronegative 
hydrogen, H [15,46,47].  We should note that pheophytins have 
significantly higher oxidation potentials than the corresponding 
chlorophylls [10,22,46], but oxygenic photosynthesis uses Chl a, which 
has the lowest oxidation potential (Figure 11), even though higher 
oxidation potential is preferable to water splitting.  The details of this 
mystery will be described elsewhere.   

The redox potentials of chlorophylls are related to the energy levels 
of their molecular orbitals: the first oxidation potential is intimately 
related to the highest occupied molecular orbital (HOMO) and the 
first reduction potential to the lowest unoccupied molecular orbital 
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(LUMO), and hence the redox potential difference seen in Figure 11 
can be taken as an index for the QY excitation energy, ΔE [15,46].  For 
example, ΔE for Chl a is 1.93 eV, which well corresponds to the QY 
excitation wavelength of 661 nm for Chl a in Figure 4.  Similarly, ΔE 
= 1.96 eV, 1.79 eV and 1.67 eV for Chls b, d and f also nicely correlate 
to the QY  peak wavelengths, 644 nm, 686 nm and 695 nm, respectively  
Pheophytin a also behaves in a similar fashion; 1.89 eV to 667 nm.

Evolution from Chl a-type cyanobacteria to A. marina 
and the strain KC1

Here we introduce our hypothesis about the evolution of A. marina 
and the strain KC1 from the Chl a-type cyanobacteria on the basis of 
the chlorophyll modification (Figure 6).  

Since the Chl a → Chl d conversion occurs with ease under oxidative 
conditions [21,48], which supports in part the succession from the Chl 
a-type cyanobacteria to A. marina.  Chlorophyll f is also produced from 
Chl a by oxidation, suggesting that Chl f also appeared after acquisition 
of Chl a.  In contrast, spontaneous conversion of Chl a into Chl b has 
not yet been observed.

     Chlorophyll a’ and Chl d’ are easily formed from Chl a and Chl d, 
respectively, by epimerization under weak basic conditions; these two 
primed chlorophylls, Chls a’ and d’, function as the primary electron 
donor in PS I (Figure 7).  Pheophytin a is also produced from Chl a 
with great ease under mild acidic conditions, and Phe a functions as the 
primary electron acceptor in PS II (Figure 7).

It is of interest to note that Chls a’, d, d’, f and Phe a are, so to speak, 
the secondary products from Chl a, but function as key components in 
natural oxygenic photosynthesis, while other possible artifacts, Phe b, 
d, f and Chls b’, f ’ are not found in natural photosystems.  We should 
emphasize again that only Chl a is the primary electron acceptor, A0, in 
PS I with no exceptions. 
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