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Abstract
The not-coding regions of the genome describe sequences that do not have a history of transcription. They are 

also called ‘dark matter’ of the genome. Here we present a working hypothesis for finding novel anti-malarial peptides 
from such regions of the yeast genome that encode neither RNA nor protein. This is based on our previous experi-
mental work where not-coding DNA sequences were artificially expressed leading to protein expression and pheno-
typic outcome. In this study, we explored the vast not-coding DNA space of Saccharomyces cerevisiae in search of 
novel antimalarial peptides. Given the lack of effective therapeutic solutions against malaria, there is an urgent unmet 
requirement to find novel antimalarial drugs and targets. Our initial efforts to find novel anti-malarial peptides have led 
to unexpected and interesting results. However, our work is preliminary and is based on computational studies only. 
In future, more computational and experimental work is needed to establish therapeutic potential of synthetic peptides 
that have origins in the not-coding genome space. 
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Introduction
Malaria is one of the most life-threatening diseases that results in a 

global loss of over 2.7 million lives every year, with African continent 
representing bulk of the reported malarial cases [1]. Some of the key 
reasons for the difficulty in controlling malaria are: (a) rapid emergence 
of Plasmodium strains resistant to existing antimalarial therapeutics, 
(b) failure in effectively implementing vector control programs and
(c) lack of an effective malaria vaccine. Recent studies indicate that
number of malaria cases would double in 20 years if novel methods of
control are not developed [2].

For the past 30 years, there has been a steady escalation in 
antimalarial drug resistance indicating ineffectiveness of the existing 
antimalarial therapeutic solutions [3]. Furthermore, the pipeline for 
discovering novel and affordable antimalarial drugs has almost dried 
up and some of the highly effective antimalarial drugs like artemisinin 
are prohibitively expensive. Chloroquine, one of the first successful 
antimalarial drugs was launched in 1940. However, its drug resistance 
has been observed in every region where Plasmodium falciparum 
infection occurs [4]. Many countries have adopted sulfadoxine/
pyrimethamine therapy to fight the wide spread resistance of malarial 
parasite to chloroquine. However, there have been reports of resistance 
to sulfadoxine / pyrimethamine therapy from Southeast Asia, South 
America and Africa [4]. The situation is increasingly bleak with the 
resistance emerging to atovaquone within a year of its launch [4]. Thus, 
there is an urgent need for novel drugs for effectively treating malaria [5]. 

Currently, artemisinin is the considered as the drug of choice to 
combat malaria. The World Health Organisation (WHO) has stressed 
that artemisinin must be combined with other drugs that have different 
mechanisms of action and longer half-lives. Decreased sensitivity 
to artemisinin monotherapy, coupled with the rise of resistance of 
parasites to all partner drugs, threaten to place millions of patients at 

risk of inadequate treatment of malaria [6]. With very few antimalarial 
drugs in the pipeline, there is an urgent unmet need of a novel, 
efficacious and cost effective antimalarial therapy. 

The key question remains: where will novel drug molecules come 
from? Given that the traditional drug discovery process has not led to 
significant breakthroughs in the recent times, it is important to develop 
new strategies in search of novel antimalarial molecules. 

In a recent study [7] we showed that not-coding DNA is an 
untapped goldmine of functional peptides and proteins. As against the 
non-coding DNA, which describes RNA coding sequences, the ‘not-
coding’ DNA refers to sequences that encode neither protein nor RNA 
i.e., they do not have any evidence of expression in their natural settings 
(Figure 1). This region is also sometimes referred to as the “dark matter 
of the genome” as it is functionally uncharacterised, vast and largely
unexplored.

Methods and Preliminary Results 
In 2009, we experimentally demonstrated for the first time, an 

ability to make user defined genes by using an artificial gene expression 
system [7]. Using not-coding genomic template of Escherichia coli, six 
unique intergenic regions were randomly selected, cloned using pBAD 
vector and expressed in the same host. The protein expression was 
verified using western blot. Of six proteins artificially expressed from 
not-coding regions of Escherichia coli, one showed significant growth 
inhibitory effects. By switching off the expression of this synthetic 
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gene, the cell growth was restored thereby showing a linear correlation 
between artificial gene expression and the observed phenotype. 

After successfully providing the proof-of-the-concept, the next 
challenge was to find if the artificial conversion of not-coding DNA into 
coding DNA is scalable? Further, what are the best case scenarios and 
boundary conditions? 

To address these questions, in this study we use malaria as an 
example. Our hypothesis is that given a sufficiently large space of not-
coding DNA sequences, one can find novel peptides and proteins. We 
call such synthetic sequences, which originate from naturally non-
expressed DNA and have potential to encode functional peptides as 
synpeps (synthetic peptides). 

To explore an application of synpep approach, we used malaria as 
a test case and considered several key interaction points which, when 
blocked, could result in the failure of parasitic infection in humans. 
One such intervention point is the invasion of host erythrocytes by 
Plasmodium falciparum merozoites [8]. Merozoites specifically target 
and invade erythrocytes, as the erythrocytic haemoglobin is a rich 
nutritional source for these parasites. If merozoites are denied entry 
into erythrocytes, they perish due to starvation. Thus, delaying entry of 
merozoites into the erythrocytes retains them within the bloodstream 
for a longer period of time. This makes merozoites vulnerable to 
immune response from the host. 

The entry of merozoite into host erythrocytes is facilitated by 
binding of a specific Plasmodium falciparum surface antigen to its 
corresponding receptor present on host erythrocytes. The parasite 
possesses different types of surface antigens that mediate erythrocyte 
invasion. The sialic acid dependent pathway, sialic acid independent 
pathway and tight junction formation interaction are some of the well-
known invasion pathways. Malarial parasites employ any one of these 
invasion mechanisms to infect the host cell. Hence, it seems that a novel 
synthetic peptide targeted at disrupting erythrocyte invasion cycle 
would be a reasonable approach to block routes of parasite invasion. 

Based on the published literature, we selected three Plasmodium 
falciparum membrane targets to design novel peptides. 

1. Erythrocyte Binding Antigen-175 (EBA-175): The invasion of 
RBCs through sialic acid dependent pathway involves the parasitic 
EBA-175 interacting with human host receptor Glycophorin A present 
on the erythrocytes [9]. During this pathway, the dimerization of 
EBA-175 is considered to be an crucial step for the completion of the 
invasion [10]. The strategy is to hinder the dimerization of EBA-175, 
with the help of synpeps.

2. Merozoite Surface Protein 1 (MSP-1): The sialic acid independent 
pathway involves the interaction between the parasitic MSP-1 and 

band 3 anion transporter present on erythrocytes. As a requirement 
for merozoite entry into an erythrocyte, MSP-1 is synthesized as a 180–
225-kDa polypeptide which undergoes two processing steps, the first at 
merozoite release from an infected cell and the second during invasion 
of an erythrocyte. At the end of the proteolytic cleavage steps, the 
fragment MSP-1(19) remains anchored to the merozoite membrane. 
MSP-1(19) interacts with its natural ligand, band 3 anion transporter 
and ensures erythrocyte invasion [11].

3. Apical Membrane Antigen 1 (AMA-1): AMA-1 is a surface protein 
present on Plasmodium falciparum. It is expressed at two stages in the 
life cycle of Plasmodium, sporozoite stage (invasion of hepatocyte) and 
merozoite stage (invasion of erythrocytes) [12]. The parasite injects a 
protein Plasmodium falciparum rhoptry neck protein-2 (PfRON-2) 
into membrane of erythrocyte. AMA-1 interacts with PfRON-2 to 
form the moving junction which aids in the process of invasion [13]. 
Mutation of the residues in the hydrophobic pocket of AMA1 results in 
inhibition of formation of AMA1-PfRON2 junction [14]. Some of the 
recent reports suggest that on blocking the moving junction formation, 
the parasite is not able to invade RBC, thus preventing the infection 
[15,16].

In this study, a library of synpeps was constructed upon translation 
of 1000 randomly selected not-coding DNA sequences of the yeast 
genome. The relevant synpeps were screened on the basis of sequence 
similarity with known ligands that bind to target proteins in their 
natural setting. This significantly reduced the number of candidate 
peptides to top nine candidate molecules i.e., three against each target. 
This number was further reduced to one lead peptide against each 
target on the basis of structural similarity with the naturally target 
binding ligands. Subsequently, the three best synpeps were docked 
with their respective targets to find preferred orientation of binding - 
important for stable complex formation. The not-coding parts of the 
yeast genome were identified from Saccharomyces Genome Database 
[17] via Yeastmine [18]. 

The not-coding sequences were computationally extracted, 
translated [19] and sequence matched with the regions of natural 
ligands that bind to the three targets selected [20]. A global sequence 
similarity of > 30% and gap less than 12% were considered for further 
studies (Table 1). The selected peptides were submitted to 3-D 
structure prediction softwares [21-26] which employ threading and 
ab-initio modelling methods. The predicted synpep structures were 
validated [27] for their structural correctness. The validated structures 
of the selected synpeps and natural ligands were superimposed the 
Root Mean Square Deviation (RMSD) was calculated [28]. The synpeps 
whose RMSDs with the natural ligands were less than 1 were chosen 
(Table 2) with an aim of finding peptides that structurally mimic the 
binding of natural ligand with the respective target and prevent further 
Plasmodium infection after entering the blood stream. The structures 
of the selected not-coding peptides after due validation and structural 
similarity with the natural ligands of the targets are illustrated in Figure 
2. Finally, synpeps were docked against their targets to assess the 
correctness of fit. Docking jobs were performed using Cluspro [29-32] 
and HADDOCK [33,34] (Figure 3).

protein
coding

Proteins

NOT
CODING

Non coding
(RNA coding)

Figure 1: Representation of the genome based on functionality (not drawn 
to scale).

Similarity% Gap% 
AMA1-SSBS-1 42.3% 11.5%

EBA 175-SSBS-2 36.0% 0%
MSP1 19-SSBS-3 44.4% 7.4%

Table 1: Comparison of sequences of binding region of natural ligands of targets 
and prospective synpeps.
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The docking of AMA-1 with R1 peptide resulted in a docking score 
of -1735 as against docking score of -1616 of AMA-1 and SSBS-1 using 
Cluspro. The ClusPro results for peptide SSBS-3 and MSP-1(19) was 
-8821 and for docking of band3 and MSP-1 (19), it was -5661. The 
docking of EBA-175 dimer performed by HADDOCK showed a barely 
strong interaction at a score of -19.6 ± -14.7. However, the docking 
of EBA-175 and SSBS-2 showed a stronger interaction at -23.7 ± -3.7 
indicating that EBA-175 might bind with greater affinity to SSBS-2 than 
its own monomer. Although these findings are encouraging, they are 
preliminary observations. More computational studies of not-coding 
DNA derived synpeps and their design would be required for future 
experimental studies.

A Critical Overview 
The human genome project revealed a surprising finding that large 

chunk of genome is unexpressed. This was strongly supported by the 
recent ENCODE studies [35]. Why nature decided not to express a 
significant region of the genome remains a mystery?

Having successfully demonstrated that one can make artificial 
genes from non-expressed genome of Escherichia coli, the big question 
is: what kind of molecules can possibly be made from the un-expressed 
genome? Given an enormous combinatorial possibility, what are the 
best case scenarios? 

A non-obvious advantage of using the not-coding DNA space is 
that synpeps are novel and not exposed to the organisms in the natural 
setting. Hence it may take greater effort and time for a pathogen to 

develop resistance towards synpeps in comparison to the naturally 
made therapeutic molecules by organisms. 

Although synpeps have a potential therapeutic use, we recognize 
certain constraints too. Synpeps present themselves with a non-trivial 
possibility of not passing the cell membrane, unless their length is about 
5 amino acids long [36]. This is because the entry of a molecule into a 
cell is regulated by channels, aquaporins and such; they do not allow 
macromolecules like proteins to pass through. As synpeps are possibly 
non-natural molecules, it is unclear whether the existing membrane 
transport mechanism will help. To address this issue, it would help to 
design novel cell penetrating peptides that can deliver synpeps into 
the cell [37]. Further, although synpeps can be designed to bind to 
a particular target one also needs to look at all the downstream and 
indirect effects. As synpeps are not exposed to natural immune system 
before, there are slim chances of body initiating an immune response 
like that of an antibody when bound to a prospective antigen. 

The present paper presents preliminary evidence-based hypothesis 
and offers a novel approach of making novel antimalarial peptides from 
not-expressed regions of the genome. In future, significant experimental 
work needs to be performed to establish the efficacy and safety of 
synpeps as an alternative to traditional routes of drug discovery against 
malaria.
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