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Abstract
Diffuse interstitial myocardial fibrosis has been described in various cardiac pathologies. Late gadolinium 

enhancement by cardiac magnetic resonance can detect the presence of focal myocardial fibrosis, but is limited for the 
assessment of diffuse interstitial fibrosis. T1 myocardial mapping is a noninvasive imaging technique which enables 
visualization and quantification of diffuse interstitial myocardial fibrosis. In this article, we review the T1 mapping 
technique and its utility in various cardiovascular disorders associated with presence of diffuse interstitial fibrosis.
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Introduction
The Extracellular Matrix (ECM) in a normal human heart is 

composed of collagen fibers, proteoglycans, glycosaminoglycans 
and fibroblasts. Myocardial fibrosis, defined as a significant increase 
in collagen volume fraction of myocardial tissue, is a common 
histological feature in various cardiomyopathies [1]. The distribution 
of this myocardial fibrosis varies according to the underlying 
pathological process. Replacement myocardial fibrosis corresponds 
to the replacement of myocytes due to cardiomyocyte necrosis and 
apoptosis resulting from underlying pathologies including ischemia, 
infarction, and myocarditis. Infiltrative myocardial fibrosis is seen 
in conditions like Amyloidosis, Anderson-Fabry disease. Diffuse 
interstitial myocardial fibrosis has been described in various conditions 
including hypertension [2], diabetes, valvular disorders, aging heart 
and idiopathic dilated cardiomyopathy [3]. Diffuse interstitial fibrosis 
results from progressive increase in collagen synthesis by myofibroblasts. 
Interstitial fibrosis and infiltrative fibrosis ultimately lead to irreversible 
replacement fibrosis. Several therapeutic strategies aimed at regression 
of this reversible interstitial fibrosis are available. Therefore, early 
diagnosis of this reversible interstitial myocardial fibrosis is essential 
to identify patients at risk for subsequent development of symptomatic 
heart failure. Though endomyocardial biopsy enables qualitative 
and quantitative assessment of myocardial fibrosis [4], it is invasive, 
prone for sampling errors and cannot detect the fibrotic involvement 
of whole ventricle. Cardiac Magnetic Resonance (CMR) imaging 
allows noninvasive assessment of myocardial structure and function 
with great level of accuracy and reproducibility [5]. The assessment 
of myocardial fibrosis is best performed after injection of gadolinium 
contrast agents that are employed to reduce the T1 relaxation time of 
myocardial tissue [6].

Late Gadolinium Enhanced (LGE) CMR enables visualization 
and quantification of focal myocardial scar. The infarcted regions 
have a slower washout rate of gadolinium contrast than the healthy 
myocardium leading to lower T1 times in these areas. LGE CMR 
depends on the difference in this signal contrast between the 
myocardial scar and the normal myocardium [7]. Although LGE 
CMR allows qualitative assessment of myocardial scar, it is limited for 
absolute quantification of myocardial scar and also for assessment of 
diffuse interstitial myocardial fibrosis. This limitation is overcome by 
the myocardial T1 mapping which enables direct signal quantification 
and characterization of myocardial tissue on a standardized scale [8]. 
In this review, we discuss in detail the assessment of diffuse interstitial 
myocardial fibrosis by T1 mapping technique.

T1 mapping Techniques
A T1 map is a parametric reconstructed map in which individual 

pixel’s intensity represents the T1 relaxation time of corresponding 
myocardial voxel. The original sequence to measure T1 relaxation 
times was developed by Look-Locker using free breathing, multi-point 
approach; which has been shown to be highly efficient and has been 
widely used for T1 measurements of brain. Different CMR acquisition 
sequences have been further developed to obtain a myocardial T1 
map including VAST [9] and inversion recovery TrueFISP [10]. 
Currently, the most widely used sequence is the Modified Look-Locker 
Inversionrecovery (MOLLI) technique described by Messroghli et 
al. [8]. MOLLI sequence allows accurate and reproducible in vivo 
measurement and T1 mapping of myocardium with high spatial 
resolution within a single breath-hold [11]. MOLLI sequence uses a 
balanced Steady-State Free Precision (SSFP) readout to obtain a higher 
signal-noise ratio. MOLLI sequence uses ECG gated image acquisition 
at end-diastole over 17 heart beats to reconstruct 11 images. All 
source images have identical voxel sizes, image position and phase of 
cardiac cycle except for different inversion times. These 11 images are 
merged to generate one final T1 map, from which T1 time for global 
or segmental left ventricle can be assessed. (Figure 1) demonstrates 
LGE sequence, pre- and post-contrast T1 mapping sequence using 
MOLLI sequence in a normal healthy volunteer. MOLLI sequence 
however has certain limitations. MOLLI is heart rate dependant, 
especially T1 values less than 200 or more than 750 ms. A heart rate 
correction of these obtained T1 values as described by Messroghli et 
al. should increase the sensitivity and specificity of this technique for 
assessment of myocardial fibrosis [11]. To overcome this limitation of 
heart rate correction, an optimized MOLLI sequence was described by 
Messroghli et al. [12]. Also, MOLLI requires 17 heart beats to obtain 
one T1 map leading to a long breath hold, thus prone for breathing 
motion artifacts. A recent introduction of Shortened MOLLI sequence 
(ShMOLLI) enables generation of accurate and precise high-resolution 
myocardial T1 maps in a short breath-hold, using 9 heartbeats across a 
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wide range of heart rates and T1 values [13]. T1 maps can be obtained 
at different slice levels before and after contrast administration. T1 
values are computed for every pixel with three parameter curve fitting 
using Levenberg-Marquardt fitting algorithm [8]. More recently, ECV 
mapping has been introduced which includes generating an automatic 
ECV map from the acquired pre and post contrast T1 maps calibrated 
by blood hematocrit. ECV mapping incorporates the algorithm for (1) 
correction of respiratory motion due to insufficient breath-holding, 
(2) correction of misregistration between breath-holds and (3) 
automated identification of blood pool. ECV mapping has been used 
for quantification of both focal and diffuse myocardial abnormalities of 
ischemic and non-ischemic origin [14,15].

T1 Parameters
The parameters measured from the T1 mapping include pre- and 

post contrast myocardial and blood T1 times. Myocardial post contrast 
T1 values are affected by a variety of technical and physiological 
factors including the type and amount of contrast agent, magnetic field 
strength, precontrast T1 time, body composition, renal function and 
hematocrit. To avoid these limitations, normalization of myocardial T1 
values in relation to the blood T1 values has been proposed [16,17]. The 
normalized T1 parameters calculated from these measured variables 
include partition coefficient and extracellular volume fraction (ECV). 
Several studies have used these integrated and raw T1 parameters as 
markers of diffuse interstitial myocardial fibrosis. Partition coefficient 
is defined as the ratio of tissue gadolinium concentration to the blood 
gadolinium concentration at equilibrium and is calculated as the slope 
of the linear relationship between R1 (reciprocal of T1) of myocardium 
versus the blood before and after gadolinium administration [18]. 
ECV fraction is calculated by multiplying the partition coefficient with 
(1-hematocrit/100) [19]. Precontrast T1 time, partition coefficient and 

ECV are positively associated, while post-contrast T1 time is negatively 
associated with presence of diffuse interstitial myocardial fibrosis.

Histological validation 
The T1 values obtained from myocardial T1 mapping have 

been histologically validated in few studies. Myocardial collagen 
content progressively increased as post contrast T1 times shortened 
with a correlation coefficient (r) of -0.7 as described by Iles et al [9]. 
Myocardial post-contrast T1 times have been correlated with biopsy 
detected interstitial fibrosis in patients evaluated for nonischemic 
cardiomyopathy [20]. A significant positive correlation (r= 0.73) has 
been demonstrated between the partition coefficient of gadolinium and 
histological collagen volume fraction in interstitial and replacement 
fibrosis [21]. A strong correlation between histological CVF % and 
ECV by ShMOLLI (r=0.685) has been described by Fontana et al [22]. 
In patients with severe aortic stenosis, precontrast T1 vales correlated 
with CVF % (r=0.65) [23].

Advantage
T1 mapping enables better visualization and characterization of 

myocardial tissue both on a global and a regional level. Myocardial 
T1 mapping can detect and quantify diffuse interstitial myocardial 
fibrosis, thus assist in monitoring the effectiveness of therapy aimed at 
regression of myocardial fibrosis and altering ventricular remodeling. 
Furthermore, early identification of diffuse interstitial fibrosis may aid 
in identification of patients at risk for subsequent development of heart 
failure. As a noninvasive imaging technique to assess diffuse interstitial 
myocardial fibrosis, T1 mapping has a potential to follow serial changes 
in myocardium over time. Whereas Endomyocardial biopsy can be 
prone to sampling errors and is limited by its accessibility to certain 
regions of heart, T1 mapping allows sampling of entire myocardium.

Limitations
Despite the advantages of T1 mapping by MOLLI sequence, 

being a single-shot acquisition sequence, the accuracy of pixel by 
pixel T1 estimation may be compromised. Also, the range of the raw 
and integrated T1 measurements for patients and normal volunteers 
is lacking. The exponential increase in T1 times after gadolinium 
administration depends on the gadolinium wash-out kinetics. Thus, 
the post-contrast T1 value varies with the timing of post contrast T1 
image acquisition. To overcome this limitation, equilibrium contrast 
CMR has been proposed which involves a bolus administration of 
gadolinium contrast followed by a continuous infusion to measure the 
ECV fraction [24]. However, the work by Schelbert et al. demonstrates 
that there is no significant difference in the ECV fraction measured by 
constant infusion and bolus administration [25].

T1 mapping in Animal Models
The T1 mapping techniques described above are adequate for 

image acquisition for heart rates up to 100 beats per minute. These 
techniques are not suitable for use in small animals where heart rates of 
200-600 beats per minute are expected. Several mdifferent T1 mapping 
techniques have been described to assess T1 relaxation times in small 
animals. Small Animal Look-Locker Inversion recovery (SALLI) as 
described by Messroghli et al. enables time efficient generation of 
cardiac T1 maps at high heart rates [26]. ECV fraction quantified by 
T1 mapping using SALLI correlated with collagen volume fraction by 
histology [27]. Li et al., described fast cardiac T1 mapping in mice using 
compressed sensing method which allows T1 image acquisition in less 
than 80 seconds at high spatial resolution [28]. Further research work 
with larger number of animals is necessary to evaluate the accuracy of 
these modalities.

Figure 1: T1 mapping using MOLLI sequence in a normal healthy volunteer: 
LGE sequence (top); Precontrast (middle) and post-contrast (bottom). T1 
mapping analysis yielded a precontrast T1 of 948ms and a 12 minute post-
contrast T1 of 455 ms.
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T1 myocardial mapping in specific cardiovascular diseases

Ischemic heart disease: The first clinical use of T1 mapping 
technique was done by Messroghli et al in patients with acute 
myocardial infarction (MI). Precontrast T1 times were 18 ± 7% higher 
and post contrast T1 times were 27 ± 4% lower in the area of myocardial 
infarction compared to non-infarcted areas [29]. In patients with 
acute MI, incremental increase in precontrast T1 values identified the 
severity of myocardial injury and predicted the functional recovery at 
follow-up [30]. There was a marked difference in post-contrast T1 time 
between the LGE positive and negative areas (333 ± 30 ms vs. 429 ± 22 
ms) in patients with ischemic cardiomyopathy [9]. Partition coefficient 
of gadolinium in patients with acute and chronic MI was significantly 
higher compared to controls [18]. In patients with prior MI, infarct 
region demonstrated a higher ECV fraction (51 ± 8%) compared to 
remote normal myocardium (27 ± 3%) [14]. (Figure 2) demonstrates 
a LGE sequence and pre- and post-contrast T1 mapping images using 
MOLLI sequence in a patient with ischemic cardiomyopathy.

Non-ischemic cardiomyopathy: Collagen deposition in non-
ischemic cardiomyopathy is diffuse, and not commonly detected 
by LGE CMR. In LGE negative areas of myocardium, a significant 
difference in the post-contrast T1 time has been demonstrated in 
patients compared to controls (429 ± 22 ms vs. 564 ± 23 ms) [14]. 
Precontrast T1 time has been demonstrated to differentiate between 
diseased and normal myocardium with 100% sensitivity, 96% specificity 
and 98% diagnostic accuracy. Further, in patients with Non-Ischemic 
Dilated Cardiomyopathy (NIDCM), higher precontrast T1 times were 
associated with a lower LV ejection fraction [31]. Partition coefficient of 
gadolinium and ECV fraction were significantly higher in patients with 
NIDCM than in controls (partition coefficient of 0.56 ± 0.15 vs. 0.41 ± 
0.06; ECV of 31 ± 5% vs. 24 ± 3%). This expansion of extracellular matrix 
was also associated with a reduced myocardial blood flow and reduced 
ejection fraction [32]. In another study, in patients with NIDCM, ECV 
was elevated at 38.1 ± 1.9% compared to controls, despite the absence 
of LGE in these patients [15]. (Figure 3) demonstrates LGE sequence 
and pre- and post-contrast T1 mapping images using MOLLI sequence 
in a patient with Non-ischemic cardiomyopathy.

Hypertrophic cardiomyopathy: In patients with Hypertrophic 
Cardiomyopathy (HCM), post contrast T1 times were significantly 
shorter compared to controls and were associated with abnormal 
diastolic function [33]. In HCM, precontrast T1 values correlated with 
disease severity, and were higher in areas with increased wall thickness 
[34]. Another study has demonstrated that precontrast T1 times were 
positively associated with LV mass [31]. Also, the mean ECV values 
in HCM (35.7 ± 2.9%) were more heterogenous but lower than the 
ECV values for MI [15]. In a recent study, it has been demonstrated 
that compared to controls, ECV is increased in patients with overt 
HCM as well as sarcomere mutation carriers even in the absence of LV 
hypertrophy [35]. (Figure 4) demonstrates LGE sequence and pre- and 
post-contrast T1 mapping images using MOLLI sequence in a patient 
with HCM.

Myocarditis: Although endomyocardial biopsy remains the gold 
standard for diagnosis of myocarditis, combined T1 and T2 weighted 
imaging techniques enable noninvasive diagnosis of myocarditis 
with high specificity [36]. Precontrast T1 times greater than 990 ms 
optimally differentiated segments affected by myocardial edema from 
normal segments with high sensitivity and specificity [37]. Precontrast 
T1 times were elevated in patients with acute myocarditis, while ECV 
values in patients with myocarditis were focally elevated (44 ± 6%) 
compared to remote regions (26.4 ± 3%) [15].

Amyloidosis: Cardiac amyloidosis is characterized by amyloid 
deposition leading to expansion of interstitial space. Precontrast T1 
time was significantly elevated in patients with amyloidosis compared 
to controls (1140 ± 61 ms vs. 9799 ± 51ms) [38]. Both partition 
coefficient of gadolinium and ECV fraction were 1.8 fold higher in 
amyloidosis compared to controls. The ECV values in amyloidosis 

Figure 2: T1 mapping using MOLLI sequence in a participant with ischemic 
scar (red arrow) LGE sequence (top) and corresponding precontrast (middle) 
and post-contrast (bottom) T1 images. T1 mapping analysis yielded a 
precontrast T1 of 1047ms and a 12 minute postcontrast T1 of 286ms.

Figure 3: T1 mapping using MOLLI sequence in a participant with Non-
ischemic cardiomyopathy. LGE sequence (top) and corresponding precontrast 
(middle) and postcontrast (bottom) T1 images. T1 mapping analysis yielded 
a precontrast T1 of 1435 ms and a 12 minute post-contrast T1 of 263 ms.
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ranges from 32 to 60% with a mean of 46 ± 12% [15]. Furthermore, 
T1 mapping in amyloidosis has been demonstrated to be useful in 
prognostic assessment and provide information relating mortality risk 
prediction [39].

Others: Patients with type 2 diabetes mellitus compared to normal 
controls had a shorter global post contrast T1 time indicating the 
presence of diffuse interstitial myocardial fibrosis and more impaired 
longitudinal systolic and diastolic function [40,41]. Patients with 
adult congenital heart disease had significantly higher ECV fraction 
compared to normal controls (31.9 ± 4.9% vs. 24.8 ± 2%) and an 
associated systolic dysfunction [19].

Future directions

Myocardial T1 mapping is a noninvasive imaging method 
to visualize extracellular matrix and quantify diffuse interstitial 
myocardial fibrosis. T1 mapping with MOLLI sequence offers 
early detection of this extracellular matrix expansion. T1 mapping 
technique has been investigated in different clinical scenarios, but 
standardization of normal values in normal individuals is necessary. 
Also, most of these studies have been conducted in a single center 
in very small cohorts; large multi-center studies are required before 
this technique can be more widely used in a clinical setting. Further, 
racial/ ethnicity differences exist LV remodeling and cardiovascular 
disease, further research is required to investigate the utilization of 
this technique in different ethnic groups. Also, longitudinal studies are 
necessary to examine the serial changes in LV remodeling, monitor the 

therapeutic strategies aimed at regression of myocardial fibrosis and 
thus improving clinical outcomes.
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