
International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 158

Agent Development Toolkits

Aarti Singh
 1
, Dimple Juneja

1
, A.K. Sharma

3

 M.M.University,Mullana (Ambala), Haryana, India

Y.M.C.A University of Science and Technology, Faridabad , Haryana , India

singh2208@gmail.com

Development of agents as well as their wide usage requires good underlying infrastructure.

Literature indicates scarcity of agent development tools in initial years of research which

limited the exploitation of this beneficial technology. However, today a wide variety of tools

are available, for developing robust infrastructure. This technical note provides a deep

overview of such tools and contrasts features provided by them.

Keywords: Multi-agent systems, agent development, agent communication, agent mobility, agent communication security

1. Introduction

Large scale realization of agent applications requires frameworks, methodologies and

tools that support effective development of agent systems. Historically the main obstacle in

agent and multi agent system development used to be the infrastructure which refers to

supporting environment where agents can communicate and achieve their desired goals.

However, simply having an infrastructure is usually not enough. As user-acceptance of the

infrastructure depends on ease of application development, versatility of applications,

support for various standards & most importantly the security of communication among

agents, security of agents on remote platforms and security of mobile agent hosting

platforms.

Nowadays many agent development tools and platforms of different quality and maturity are

available and have been employed for different applications in different parts of the world.

There is so far no consensus about which tool is best for agent development. With increased

popularity of agent technology, agent development has also received attention, securing its

place in commercial sector as well. Thus it is worth studying various agent toolkits in depth,

and to analyze their strengths & weaknesses.

2. Agent Development Tools

 According to the technical report by Nguyen & Dang [13] there are over 100 products

in this category. Due to the space constraints, we would be focusing on most appealing &

promising toolkits among the available choices.

2.1 IBM-Aglet or Aglet Software Development Kit (ASDK)

 ASDK or IBM-Aglet [13, 8, 10] is an environment for developing mobile agents

based application in JAVA. It is an open source freely available toolkit, with latest version

Aglet 2.5 alpha. It provides good graphical user interface for agent development. It mainly

comprises of two packages-The Aglet Building Environment (ABE) and the Aglet

Workbench. Aglet workbench aims at developing stand alone mobile agents. The ABE

A
 T

e
c
h

n
ic

a
l

N
o

te

mailto:singh2208@gmail.com

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 159

(SDK) comprises of Aglet API, the Aglet Server known as Tahiti and the Agent Web

Launcher called Fiji along with documentation and sample Aglets. Aglets are basically java

objects comprising of two major components i.e. Aglet Core & Aglet Proxy. Core is holder

of all the internal variables and methods of an agent whereas proxy acts as an interface to the

core, shielding it from any malicious interference from the outside world.

Aglet server Tahiti is an application program that works as agent server for aglets. It

provides users with a good GUI and allows users to create & dispatch an agent, monitor it,

dispose it off when required. It gives user the ability to set agent’s access privileges on the

server. For an aglet to move to a remote host, it must have Tahiti server installed on it, which

solves some of the security problems. Fiji is an applet in java which can create Aglets or

retract an existing aglet into client’s web browser. This applet accepts an agent’s URL as

parameter and can be embedded in a web page using HTML, like any other applet.

Aglets support both agent mobility as well as predefined movement of the agent on the

network also called as Itinerary. Although aglet provides weak agent mobility but that too is

restricted to its own servers. Aglet works on Mobile Agent System Interoperability Facility

(MASIF).Agent migration is implemented using socket mechanism. Communication among

agents is achieved using synchronous and asynchronous message passing. Agent Transfer

Protocol (ATP) along with Java Agent Transfer and Communication Interface (J-ATCI) also

help achieve the same

Although Aglet platform has wide user acceptance but it doesn’t provide much

security. Its security is knitted in the concept of restricting transfer of aglets only to its own

servers. Due to lack of security, state of aglets can’t be stored on any other host. No such

method is provided by this tool. Scalability is another problem, since aglets are not

interoperable with other platforms or their agents, due to their restriction of working with

their own server. Following figure illustrates the structure of an aglet

Fig. 1: Structure of an Aglet [8]

2.2 Voyager

Voyager [10, 1, 9] is an agent development tool developed by ObjectSpace, in mid-

1996. ObjectSpace has been taken over by Recursion Software Inc. since 2001 and it’s now

their commercial product. Latest version available is Voyager 8.0.It’s a simple yet powerful

technology for creating mobile agents in Java. It was an improvement over already existing

platforms like Aglets, Odyssey, Concordia etc. which only allowed developers to create

agents and launch them into a network to fulfill its mission. But none allowed sending

messages to a moving agent, which made it difficult to communicate with an agent once it

has been launched and also for agents to communicate with other agents.

A
 T

e
c
h

n
ic

a
l

N
o

te

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 160

Voyager seamlessly integrated fundamental distributed computing with agent technology. It

treats an agent like a special kind of object which can move independently and can continue

its execution while moving around. The agent and object are different only because an agent

can move autonomously whereas an object can’t.

It allows an agent to send and receive Java messages to and from other agent, even while

traversing the network, irrespective of its position in the network. It supports synchronous,

one-way and future message modes. Whenever an agent moves, it leaves behind a forwarder

object which forwards the message to its new location.

Voyager provides flexible life spans for agents, by supporting a variety of life span

methods:

(1) An agent can live until it has none local or remote references (default life span of an

agent).

(2) Agent can live for a certain amount of time (by default for a single day).

(3) It can live for a particular point in time.

(4) It can live until it remains inactive for a specified time.

(5) An agent can live forever.

(6) An agent’s life span can be changed flexibly as required.

Another attractive feature of this tool is its support for directory service, which is

particularly important in launching a mobile agent from one application to another and for

locating an agent after it moves to some other location in the network. Its directory structure

allows creating and connecting network directories together to generate a large interlinked

directory structure.

Voyager supports weak mobility of agents using RMI technique. It allows all serializable

objects to be mobile using Virtual Code Compiler (VCC). VCC utility accepts any .class or

.java file and produces a new remote enabled virtual class. This virtual class is used in further

communications with that agent/object. Agents use moveTo() function and a callback

function for migrating to a remote host. On reaching new host, the agent retrives the

callback function that it sent and resumes its execution.

Voyager has an associated server called ‘voyager’ but it’s not necessary to have such

server installed on all nodes in the network. Due to this reason agents created using voyager

are provided restricted access on the host servers. Thus provision of agent and host security

is weak in this tool.

2.3 JADE

JADE (Java Agent DEvelopment Framework) [13, 3, 4, 6 , 5 , 17] is a software

Framework fully implemented in Java language. It is developed by Tilab for the development

of multi-agent applications based on peer-to-peer communication architecture. Latest version

available is 4.0.1 released in July 2010. It simplifies the implementation of multi-agent

systems through a middle-ware that complies with the latest Foundation for intelligent

physical agents (FIPA) 2000 specifications. It provides a set of graphical tools that supports

the debugging and deployment phases of agent development. Jade permits the intelligence,

information & resources to be distributed over the network in the form of java compatible

mobile devices like PDA, pagers, cell phones, smart phones, laptops or fixed desktops etc.

The communication environment evolves gradually with the appearance and disappearance

of various peers, (known as agents in Jade) according to their needs and requirements.

A
 T

e
c
h

n
ic

a
l

N
o

te

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 161

In JADE an instance of run-time environment is called a container, as it holds all the agents

created in it. Collection of such containers is called a platform and it provides a homogenous

layer which hides the complexity of underlying hardware & software from agents and their

developers. It is compatible with J2ME, J2EE & CLDC. Its low memory requirements make

it suitable for mobile devices. Nokia, Motorola, Siemens, Compaq & Hp are some of well

known brands having compatibility with JADE. Following figure illustrates the architecture

of JADE.

Fig.2: Architecture of JADE [3]

Every container in JADE comprises of Directory Facilitator (DF) agent, Remote

Monitoring Interface (RMI) agent & Agent Monitoring System (AMS) agent. Here the

agents can discover other agents dynamically using DF agent & can communicate with each

other using peer-to-peer paradigm.

In JADE agents communicate using asynchronous message passing technique which is

most widely accepted model for distributed and loosely coupled communications. JADE

preserves the security of agents by providing strong authentication mechanisms to verify

rights of any agent. Messages exchanged among agents comply with Agent Communication

Language (ACL) defined by FIPA. JADE supports execution of multiple parallel tasks with

in the same java thread. This feature ensures scalability as well as meets resource constraints

of environment.

It supports agent mobility by allowing an agent to transfer its code as well as its state to

remote hosts. The form of mobility supported in JADE is known as ‘Not-so-Weak’ as the

stack & the program counter can not be saved in Java. Jade has security feature inbuilt in it.

JADE Object Manager provides connection authentication, user validation and RPC message

encryption. The Jade socket proxy agent acts as bidirectional gateway between a JADE

platform and an ordinary TCP/IP connection [13].

Interoperability is an attractive feature of JADE, since it is FIPA compliant. Thus

agents created in JADE can interoperate with other agents, following the same standards.

Also it supports complex interaction protocols like contract net protocol for facilitating

complex multi-agent applications.

A
 T

e
c
h

n
ic

a
l

N
o

te

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 162

2.4 Anchor

Anchor [12] agent toolkit is developed by Lawerence Berkeley National Laboratory,

U.S.A. it facilitates the transmission and secure management of mobile agents in a

heterogeneous distributed environments. This toolkit is available in BSD style license. Its

architecture comprises of an agent viewer graphical user interface, Agent API, Anchor

server, Anchor security manager (ASM) , Anchor class loader (ACL), secure agent transfer

protocol (satp) handler, Anchor Java Naming and Directory Interface (AJNDI) & Anchor

Java Native Interface (AJNI) components.

Agent model in Anchor is based on that of Aglets. Agents are serializable java objects

capable of migrating in the network. Agents are created in contexts, where context is a

namespace under which agents are grouped together. Agents are accessed through their

proxies, which protect the agent from any attempt of direct access to its code and methods.

Also it provides location transparency to agent which means an agent is represented in a

machine even if it has migrated to some other machine in the network. All messages to that

agent are forwarded to its location through its proxy.

Agent server in Anchor is a run time environment which acts as backbone of this

toolkit. It runs on a host and works on a specific port. It performs all system related

functions. Anchor server supports the agent migration through satp. Security is a major

concern in this toolkit. Mutual authentication between agent systems is established through

secure socket layer (SSL). Agents are authenticated by signing their byte codes with their

private keys.

An interesting component of Anchor toolkit is Akenti which is an access control system

designed to ensure controlled access of distributed resources. This component uses Public

key infrastructure. Access control decisions are made using digitally signed certificated

based on X.509 standard.

Integration of Akenti component in Anchor provides it strong security. AJANDI component

in Anchor provides a naming service through which every agent can register and publish its

current information. It also provides a directory service to enable effective searching of

agents. Agent viewer component supports features like creating an agent, its dispatch,

retraction, disposal, activation and deactivation and also cloning of an agent.

2.5 Zeus

Zeus [13, 7, 18] is an integrated environment for the rapid development of collaborative

agent applications, developed by Advanced Applications & Technology Department of

British Telecommunication labs (http://www.bt.lab.com). It is open source freely available

toolkit. It is purely implemented in Java which makes it compatible with most hardware

platforms. It also complies with FIPA standards.

Zeus provides support for generic agent functionality and has sophisticated support for

the planning and scheduling of an agent's actions. It provides a set of software components

and tools used to design, develop and organize agent systems. It has good graphical user

interface and embedded components like report generation tool, statistical tool, agent and

society viewer tool etc. which help in observation of application under development. Also it

allows the designers to use different negotiation techniques for testing implemented agents.

Communication among agents is performed using Agent Communication Language

(ACL) or Knowledge Query Manipulation language (KQML). Communication security is

provided using public key, private key cryptography and digital signature technologies.

A
 T

e
c
h

n
ic

a
l

N
o

te

http://www.bt.lab.com/

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 163

Major drawbacks of this toolkit include lack of support for agent mobility and its weak

documentation which leads to difficulties in creation of new applications.

3. Comparison of Various Toolkits

This section compares the above toolkits on major features which can affect their

applicability.

 Nature of product: whether a toolkit is open source or commercially available influences

end users a great deal, as if a product is freely available some compromises can be made with

features provided as compared to the one which involves some cost.

 Standard Implemented: Foundation for Intelligent Physical Agents (FIPA) is a non

profit organization involved in standardization of protocols & specification for agents Its

goal is to establish internationally accepted specifications so as to maximize interoperability

across agent based applications, services and equipment. Thus if a toolkit comply with FIPA

standards it increases its utility and scalability.

 Communication Technique: Asynchronous communication is more efficient as

compared to synchronous communication.

 Security Mechanism: Strong security mechanisms are desirable in technologies

operating in heterogeneous distributed environments like world wide web (WWW).

Considering the nature of applications where agents are employed these days, strong security

features embedded in a toolkit can make it more appealing.

 Agent mobility: agent mobility can reduce network traffic and can increase efficiency of

agents. It’s a feature desired from agent toolkit.

 Migration Mechanism: RMI mechanism consumes more time and resources in agent

migration compared to socket mechanism.

Table 1 given below summarizes the features of various toolkits discussed so far in this paper.

Table 1: Comparison of Various Toolkits

Agent

Development

Toolkits

Aglet Voyager JADE Anchor Zeus

Features

Nature of

Produce

Free, Open

source

Commercial Free, Open

Source

Available in

BSD license

Free, open

source

Standard

implemented

MASIF ---- FIPA

Compliant

SSL, X.509 FIPA

compliant

Communication

Technique

Synchronous ,

Asynchronous

All methods Asynchronous Asynchronous Asynchronous

Security

Mechanism

Poor Weak Good Strong

security

Good

Agent Mobility Weak Weak Not-so-weak Weak Do not

support

Agent

Migration

Mechanism

Socket RMI RMI Socket null

A
 T

e
c
h

n
ic

a
l

N
o

te

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 164

4. Conclusions

This work analyzed five agent development toolkits developed by different groups. On

comparison Jade agent development toolkit seems most appealing. It is open source platform,

purely designed in Java, provides consistency in API and supports different kinds of devices

operating in internet. It provides good security features and supports sound agent mobility.

Among other tools Voyager is commercial tool and doesn’t comply with FIPA standards.

Zeus supports FIPA standards but doesn’t provide agent mobility. Aglet also doesn’t comply

with FIPA, lacks security and scalability. Anchor provides good security but doesn’t follow

FIPA specifications, thus lacks scalability. Thus JADE agent development toolkit is most

balanced toolkit among the five discussed in this work.

References

[1] ‘Voyager and Agent Platforms Comparison’ published by ObjectSpace Inc.for Voyager 1.0, available
online at http://www.cis.upenn.edu/~bcpierce/courses/629/papers/unfiled/AgentPlatformsW97.PDF,
September 1997.

[2] Aglet community http://aglets.sourceforge.net/

[3] Bellifemine F., Caire G., Poggi A. and Rimassa G. (2003), ‘JADE: A white Paper’. Available at
http://exp.telecomitalialab.com , exp, vol. 3, No. 3, September 2003.

[4] Bellifemine F., Poggi A. and Rimassa G., ‘Developing Multi-agent systems with a FIPA compliant
agent framework’. Published in Software-Practice and Experience, Vol. 31, pp. 103-128, 2001.

[5] Bellifemine F., Poggi A. and Rimassa G., ‘Developing Multi-agent Systems with JADE’, published in
Intelligent Agents VII, LNAI 1986, pp. 89–103, 2001.

[6] Bellifemine F., Poggi A. and Rimassa G., ‘JADE-A FIPA Compliant agent Framework’. Published in
4th International Conference on Practical Application of Intelligent Agents and Multi-Agent Technology,
(1999).

[7] Camacho D., Aler R., Castro C. and Molina M.J. (2002), ‘Performance Evaluation of Zeus, Jade and
Skeleton Agent Frameworks’. In IEEE SMC 2002.

[8] Clements P.E., Papaioannou T. and Edwards J., ‘Aglets:Enabling the Virtual Enterprise’. Published in
ME-SELA’97, pp. 425-432.

[9] George J. Valentino J. G., Kniola T., Khalil S., ‘An Agents Toolkit to Support Distributed
Simulations’. Available online at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.9252 ,
2007

[10] Horvat D. , Cvetkovic D. , Milutinovic V. , Kocovic P. and Kovacevic V. (2000), ‘Mobile Agents and
Java Mobile Agents Toolkits’.Proceedings of the 33

rd
 Hawaii IEEE International conference on System

Sciences (HICSS)-2000, Maui, Hawaii, USA, January 2000.

[11] JADE http://jade.tilab.com/

[12] Mudumbai S.S., William J. and Abdelliah E., ‘Anchor Toolkit- A Secure Mobile Agent System’.
Published in eScholarship. Available at http://escholarship.org/uc/item/2594j56c .

[13] Nguyen G., Dang T.T., Hluchy L., Laclavik M., Balogh Z.and Budinska I., ‘Agent Platform Evaluation
and Comparison’, Published by Institute of informatics, Slovak Academy of Sciences, Pellucid 5FP IST
-2001-34519, June 2002.

[14] Picco P.G., ‘Mobile agents: An Introduction’. Published in Microprocessors and Microsystems by
Elsevier Sciences, vol. 25, pp. 65-74, 2001.

[15] Publicly available implementations of FIPA specifications
http://www.fipa.org/resources/livesystems.html

[16] Vila X., Schuster A. and Riera A., ‘Security for a Multi-Agent System based on JADE’. Published in
Computers & Security, vol. 26, pp. 391-400, 2007.

[17] Vitabile S., Conti V., Militello C., Sorbello F., ‘An extended JADE-S based framework for
Developing Secure Multi-Agent Systems’, published in Computer Standards & Interfaces, Vol. 31, pp.
913–930, 2009.

[18] Zeus www.labs.bt.com/projects/agents/zeus

A
 T

e
c
h

n
ic

a
l

N
o

te

http://www.cis.upenn.edu/~bcpierce/courses/629/papers/unfiled/AgentPlatformsW97.PDF
http://aglets.sourceforge.net/
http://exp.telecomitalialab.com/
http://jade.tilab.com/
http://escholarship.org/uc/item/2594j56c
http://www.fipa.org/resources/livesystems.html
http://www.labs.bt.com/projects/agents/zeus

