
Development of Combination Targeted Therapies for Multi-Driver Cancers

ABSTRACT
Most cancers are supported by multiple independent drivers, and cannot be effectively treated by targeted therapies

blocking any one driver. Instead, combination targeted therapy which uses a combination of targeted drugs to block

all important drivers is required. Developing combination targeted therapies for such cancers requires an

understanding of the complex interactions between targeted drugs and the individual drivers as well as other

unintended targets. The current pharmacological models, based on the Hill equation, do not adequately describe

such complex interactions. This article discusses the general approaches of developing combination targeted

therapies, and comments on a recently developed biphasic pharmacological model for characterizing such complex

interactions and predicting synergistic drug combinations for multi-driver cancers.
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INTRODUCTION
Targeted cancer therapies use small molecules or monoclonal

antibodies to block the function of cancer drivers that is
essential for the viability, survival and proliferation of cancer
cells. They are most effective toward mono-driver cancers.
Successful examples include targeting BCR-Abl in chronic
myeloid leukemia, ErbB2 or estrogen receptor in breast cancers,
mutated epidermal growth factor receptor in non-small cell lung
cancer, and activated c-Kit in gastrointestinal stromal tumors
[1-5]. Because cancer drivers are often protein kinases or activate
protein kinases, and protein kinases are relatively easy to develop
inhibitors for, most targeted therapies are small molecule
inhibitors or monoclonal antibodies targeting protein kinases
[6-9].

LITERATURE REVIEW

Targeted therapies are effective for mono-driver
cancers but not for multi-driver cancers

Despite the dramatic progress in the last few decades, targeted
cancer therapies reach only a small fraction of cancer patients. A
2018 study indicates that only 8.33% of all US cancer patients

are genomically eligible for targeted therapies, and only 4.9%
benefited from such treatments [10]. One fundamental reason
for this limited reach is that most cancers are multi-driver
cancers, where multiple cancer drivers independently contribute
to the cancer cell viability, survival, and proliferation [11-13].
Such multi-driver cancers are intrinsically resistant to any single
agent targeted therapy. For a multi-driver cancer, a combination
of drugs, each blocking an individual driver and collectively
blocking all important drivers, is necessary for effective targeted
treatment.

Some targeted drug combinations have been approved for cancer
therapy, but effective and synergistic combination targeted
therapies for multi-driver cancers remain elusive. A 2017 analysis
indicated that most of the benefits of approved combination
therapies are derived from different patient subgroups benefiting
from different components of the combinations, rather than
individual patients benefiting from the synergy or additivity of
the combinations [14]. Identifying synergistic or additive drug
combinations that specifically target the activated cancer drivers
in a multi-driver cancer remains a critical challenge.

Internal Medicine: Open Access Mini Review

Correspondence to:

Received: July 19, 2021; Accepted: August 2, 2021; Published: August 9, 2021

Citation:  (2021) Development of Combination Targeted Therapies for Multi-Driver Cancers. Intern Med. 11:344.

Copyright: © 
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Intern Med, Vol.11 Iss.4 No:1000344 1

Richard J. Schonberger* 

Department of Management Science, University of Washington-  Seattle, Washington, United States

Richrd Schonbergr, 117 107 Ave., NE, Unit 2101,  Bellevue,  Washington,   98004,  USA, E-mail:sainc17@centurylink.net 

2021 Schonbergr RJ. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 
permits

 Schonbergr RJ.



Combination targeted therapies can be developed
empirically or by rational design

There are two general approaches of developing targeted
combination therapies for cancers: empirical drug combination
and rational design. Empirical drug combinations can be
formulated by preclinical drug screen of combinations of
promising drug candidates or clinical trials of combinations of
already approved drugs [15-18]. Empirically formulating and
testing drug combinations do not require a precise
understanding of the molecular mechanisms of the targeted
cancer. It is often hampered by the vast number of possible drug
combinations and limited target coverage by the approved drugs.
Rational combination design can potentially produce
mechanism-based cancer-specific drug combinations for a given
cancer, but it requires a mechanistic understanding of the
oncogenic mechanisms of the cancer and how the drug
candidates interact with the molecular system of the cancer.
Such an understanding has been hampered by the unique
complexities of protein kinases as cancer drivers.

Protein kinase inhibitors may inhibit multiple
protein kinases in multi-driver cancers

At the heart of the challenge is the complex interaction between
targeted drugs and potential targets in multi-driver cancer cells.
Protein kinases make up one of the largest enzyme families
with>500 members in human cells. Due to the structural
similarity of these enzymes, protein kinase inhibitors tend to
potently inhibit their intended targets, but also invariably
inhibit a large number of other unintended protein kinases,
albeit with much less affinity. Toward a multi-driver cancer cell,
a kinase inhibitor could interact with multiple cancer drivers
and protein kinases in other biochemical processes. Thus a
targeted drug may have a target-specific inhibition as well as off-
target inhibition. When such drugs are combined, the effects
become even more complex. Thus, pharmacological and
biochemical understanding of the interaction between the drugs
and the intended and unintended targets in the cancer system
becomes crucial for rational design of combination targeted
therapies for multi-driver cancers.

Current pharmacological models do not adequately
describe the complex interactions between targeted
drugs and the multi-driver cancer system

Currently, pharmacological analysis of how cancer cells respond
to drugs is based on the Hill equation (I = Imax X Dn/((IC50*)
n+Dn)), which expresses the inhibition (I) as a function of the
Drug concentration (D) using three inhibitory parameters: The
maximal inhibition at saturating concentration (Imax), the Hill
slope or co-efficient (n), and the concentration of a drug that
achieves 50% of Imax (IC50*) [19-23]. A simplified version
assumes the Imax to be 100% (I = Dn/((IC50) n+Dn), where the
IC50 is the drug concentration that inhibits total cell viability by
50%24. The IC50 has been widely used to represent how a drug
inhibits cancer cells, such as the Genomics of Drug Sensitivity
in Cancer database [24-26].

However, the Hill equation does not distinguish the target-
specific and the off-target effects because it is based on the 
assumption of one drug/one target interaction. Thus it does not 
adequately describe the complex interactions between a drug 
and multiple targets in a multi-driver cancer cell. For example, 
many kinase inhibitors cause unusually shallow dose response 
curves, suggesting a slow increase in inhibition as drug 
concentration increases. The classic Hill equation analysis of 
such shallow inhibition curves results in a Hill co-efficient slope 
of less than 1, suggesting an apparent "negative 
cooperativity" [20]. Another study found that 28% of cell 
response curves are clearly multi-phasic [27]. These dose 
response patterns likely reflect complex interactions between 
kinase inhibitors and multi-driver cancer cells, but such 
complex interactions remain mathematically and 
mechanistically undefined.

The biphasic pharmacological model can describe 
the response of multi-driver cancer cells to targeted 
therapy and help predict mechanism-based drug 
combinations.
To characterize the interaction, we recently examined how 
a panel of approximately 20 lung, leukemia, colorectal cancer, 
and triple negative breast cancer cells responded to a panel of 
kinase inhibitors [19,28-30]. We discovered that these cells 
can be divided into mono-driver cancer cells and multi-
driver cancer cells. While the mono-driver cancer cells, CTV-1 
(acute myeloid leukemia) and HCC-827 (non-small cell lung 
cancer) respond to inhibitors to the main driver in a manner 
conforming to the Hill equation, most colorectal cancer and 
triple negative breast cancer cells are multi-driver cancer cells 
[19,28,29,30]. They are inhibited by multiple kinase inhibitors 
in a shallow or biphasic dose response pattern. These 
responses can be described by a biphasic model 
(I=F1x[D]/([D]+Kd1)+F2x[D]/([D]+Kd2))[19,30]. In this 
model, the inhibition (I) by a drug has two phases: F1 and 
F2, as fractions of total cell viability, and each phase has its 
own binding affinity (Kd1 and Kd2). Fitting the dose 
response data to the biphasic equation yields three 
inhibitory parameters, F1/F2 ratio, Kd1 and Kd2.

This analysis suggests that a multi-driver cancer cell responds to a 
driver inhibitor in the following manner: The inhibitor causes a 
partial inhibition of cell viability (F1) by blocking one of the 
drivers with high affinity (Kd1). As the drug concentration 
increases, it causes additional off-target inhibition (F2) 
with much lower affinity (Kd2). This mechanistic 
understanding predicts that the combination of two or more 
such inhibitors with independent F1 inhibition would potently 
and fully block the cell viability by each inhibitor blocking 
an independent driver. In numerous cancer cell models, this 
approach helped identify highly effective and synergistic 
combinations of targeted drugs. Such combinations often 
achieve combination indexes far below 0.1, which translate to 
combination dose reductions far greater than 10-fold [19,30]. 
Molecular analysis of the effects of the individual drugs and 
drug combinations confirmed that each inhibitor 
independently blocks its intended target and the combinations 
block multiple activated signaling pathways [19,30]. These 
results provide a promising approach toward rationally 
designing mechanism-based combination targetedIntern Med, Vol.11 Iss.4 No:1000344 2

Schonbergr RJ



therapies for multi-driver cancers. If further validated in animal
models and clinical settings, the rationally designed and
mechanism-based combination targeted therapies would likely
expand the reach of targeted therapy to most, if not all, cancers.

CONCLUSION
In summary, developing combination targeted therapy for multi-
driver cancers is a complex challenge and will largely determine
if targeted therapy will remain a niche option for a small
fraction of cancer patients or a widely beneficial treatment for
most if not all cancers. The biphasic analysis-based rational
design is a promising approach for developing combination
targeted therapies for multi-driver cancers, but its full potential
remains to be determined.
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