

Research Article

Development of a ⁶⁸Ga-Labeled Bombesin Analog for Gastrin-Releasing Peptide Receptor-Expressing Prostate Tumor Imaging

Jae Cheong Lim^{1,2*}, So Hee Dho¹, Eun Ha Cho¹, So Young Lee¹, Soo Yong Kim¹, Sung Hee Jung¹ and Jong Choon Kim²

¹Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea ²College of Veterinary Medicine, Chonnam National University, Gwangju, Korea

Abstract

Our previous study demonstrated the therapeutic efficacy of ¹⁷⁷Lu-DOTA-gluBBN for the treatment of GRPRexpressing prostate tumors. As a matched pair for ¹⁷⁷Lu, the development of labeling and molecular imaging technology using ⁶⁸Ga is needed to introduce the "theranostic" approach. Therefore, the present study described the ⁶⁸Ga-labeled bombesin analog, ⁶⁹Ga-DOTA-gluBBN for the imaging of GRPR-expressing prostate tumors. Methods: ⁶⁹Ga was concentrated and labeled with DOTA-gluBBN using the NaCl method, and the labeling yield was evaluated by iTLC-SG. Human prostate PC-3 tumor cells were used to induce a subcutaneously xenografted-tumor model and a peritoneal metastasized tumor model. PET-CT imaging studies were performed in both animal models. Results: Eluted ⁶⁸Ga solution containing 5~10% of impurities was purified (>99%) and labeled with DOTA-gluBBN with a high incorporation yield (>98%). The total preparation time from the elution and quality control steps required below twenty minutes. ⁶⁸Ga-DOTA-gluBBN was clearly visualized in xenografted PC-3 tumors at 1 hr p.i., and the tumor-tomuscle ratio was 1.7-fold higher than that observed using ¹⁸F-FDG. In a peritoneal metastasized tumor model, PC-3 tumors were widespread in peritoneum. The metastases could not be specifically visualized by PET imaging, but the tumor uptake was confirmed by ex-vivo autoradiography.

Conclusion: Favorable preclinical results demonstrating specific and effective imaging of GRPR-expressing prostate tumor recommend the further evaluation of ⁶⁸Ga-DOTA-gluBBN in a clinical study to introduce a theranostic approach for prostate carcinoma patients.

Keywords: PET; Gallium-68 (⁶⁸Ga); Gastrin releasing peptide receptor; Bombesin; Prostate cancer

Abbreviations: DDW: Deionized Distilled Water; S.C: Subcutaneously; I.P: Intraperitoneal; p.i: Post Injection; FDG: Fluorodeoxyglucose

Introduction

Molecular imaging has led to substantial advances in the diagnosis of cancer, which makes it possible to directly and non-invasively monitor the pathological processes of cancer in real-time. Because the development of a suitable molecular imaging probe is the most important for the molecular imaging, numerous molecules have been discovered in recent years, making targeted molecular imaging possible [1].

Prostate cancer is the most common non-cutaneous malignancy among American men, and it is the second leading cause of cancer death in men in the United States [2]. Because prostate carcinoma cells do not use glucose notably more than normal cells, the most widely used ¹⁸F-FDG does not play a prominent role in the diagnosis and staging of prostate cancer; an overall sensitivity of only 57% on a perpatient basis on staging or restaging for 244 prostate cancer patients was reported [3,4]. Although ¹⁸F-choline is considered to be the standard diagnostic imaging tool for the clinical assessment of recurrent prostate cancer in Europe, it is not specific for cancer cells. Thus, advances in the imaging of prostate cancer cells may facilitate earlier and more accurate diagnosis and treatment [5].

Bombesin is a neuropeptide ligand that binds to Gastrin-Releasing Peptide Receptors (GRPRs) with high affinity. GRPRs have been shown to be overexpressed in many human tumors, including prostate cancer, breast cancer, small cell lung cancer, ovarian cancers, endometrial cancers, and gastrointestinal stromal tumors [6]. In particular, the overexpression of the GRPR, also called bombesin receptor subtype 2, in prostate cancer cells provides a potential target for the specific diagnosis and therapy of prostate cancer [5].

⁶⁸Ga is produced from a cost-effective generator, and its half-life is 67.6 min, permitting the production and application of resultant agents. Because ⁶⁸Ga provides sufficient levels of radioactivity for highquality images, the examination time and radiation dose to the patient can be minimized. In addition, most therapeutic radionuclides such as ¹⁷⁷Lu, are also metals and might allow for theranostic development [7]. According to these advantages of ⁶⁸Ga, several clinical studies regarding GRPR imaging have been conducted using ⁶⁸Ga-BZH3, ⁶⁸Ga-DOTA-BOM and ⁶⁸Ga-BAY86-7548 [8-10].

Our previous study demonstrated the targeting and therapeutic efficacy of ¹⁷⁷Lu-DOTA-gluBBN for the treatment of GRPR-expressing prostate tumors [11]. To introduce the "theranostic" approach, the development of molecular imaging technology using DOTA-gluBBN is needed, and ⁶⁸Ga, which is known as the "theranostic twins" of ¹⁷⁷Lu, is appropriate for the imaging [12].

Therefore, in this report, we describe the ⁶⁸Ga radiolabeling of the

^{*}Corresponding author: Jae Cheong Lim, Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353, Republic of Korea, Tel: 82-42-868-8344; Fax: 82-42-868-8448; E-mail: limjc@kaeri.re.kr

Received August 05, 2015; Accepted August 28, 2015; Published September 04, 2015

Citation: Lim JC, Dho SH, Cho EH, Lee SY, Kim SY, et al. (2015) Development of a ⁶⁶Ga-Labeled Bombesin Analog for Gastrin-Releasing Peptide Receptor-Expressing Prostate Tumor Imaging. Adv Tech Biol Med 3: 135. doi: 10.4172/2379-1764.1000135

Copyright: © 2015 Lim JC, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

bombesin analog, DOTA-gluBBN, and the preclinical imaging efficacy of ⁶⁸Ga-DOTA-gluBBN as an imaging modality for GRPR-expressing prostate tumors.

Materials and Methods

Materials

All chemicals were of analytical grade, purchased from Anaspec, and used without further purification (Fremont, CA, US). The glycated bombesin analog, DOTA-gluBBN was synthesized using a previously described method and the molecular structure was shown in Figure 1 [13]. For all experiments, ⁶⁸Ga produced from a ⁶⁸Ge/⁶⁸Ga generator (ITG, Germany) was used. The radioactivity was determined using a Wallac 1470 automated gamma counter (PerkinElmer Life Science, Massachusetts, USA) and an ionizing chamber (Atomlab 200, Bio-dex, New York, USA). The incorporation yield and radiochemical purity (RCP) were determined using a Tracemaster 20 automated TLC-linear analyzer (Berthold, Germany).

Preparation of ⁶⁸Ga-labeled peptide: ⁶⁸Ga-DOTA-gluBBN

The ⁶⁸Ge/⁶⁸Ga generator was eluted with a total of 4 ml of 0.05 M HCl according to the manufacturer's instructions and concentrated using a NaCl-based ⁶⁸Ga eluate concentration method as described by Mueller et al. [14]. Briefly, the ⁶⁸Ga generator eluate was collected by a SCX cation exchange cartridge and eluted from the cartridge with 0.5 ml of a 5 M NaCl solution containing a 12.5 µl of 5.5 M HCl. This eluate was slowly added to 350 µl of ammonium acetate buffer (pH4.5; final 0.25 M) containing ascorbic acid (final 0.1 M) and DOTA-gluBBN in 150 µl of DDW. The mixture was heated by heating block at 100°C for 7 min for the radiolabeling. The iTLC-SG (solvent: 0.5 M sodium citrate buffer, pH4.5) was used to determine the radiochemical purity of the ⁶⁸Ga-DOTA-gluBBN preparation. To evaluate its radiochemical stability, ⁶⁸Ga-DOTA-gluBBN with or without adding 9 ml of saline at room temperature was taken at selected times, and analyzed by iTLC-SG.

Preparation of animal models

Cell culture: PC-3 human prostate carcinoma cells were obtained

from the American Type Culture Collection (ATCC) and grown in 100-mm culture dishes (Corning, Corning, NY, USA). The cells were cultured in RPMI-1640 (LONZA, Walkersville, MD, USA) supplemented with 10% fetal bovine serum, 100 units/ml penicillin, and 100 μ g/ml streptomycin (Sigma, Milan, Italy) in an atmosphere of 5% CO2 in air at 37°C for up to approximately 90 % confluence.

Animal models: The protocols used in the animal studies were approved by the Institutional Animal Care and Use Committee at KAERI, and the animals were cared for in accordance with the Guidelines for Animal Experiments.

For the induction of tumor xenografts, PC-3 cells were subcutaneously injected in the right upper flank of male balb/c nude mice at a concentration of 1×10^7 cells/mouse with 100 µl of a 1:1 mixture of culture medium and Matrigel. For the peritoneal metastasized model, 1×10^7 PC-3 cells were intrape ritoneally-injected into male balb/c nude mice with 500 µl of saline.

Positron Emission Tomography-Computed Tomography (PET-CT) imaging

NanoPET/CT scans (Bioscan, USA) were performed using a rodent scanner. ⁶⁸Ga-DOTA-gluBBN (3.7 MBq/100 μ l) was injected into PC-3 tumor mice under isoflurane anesthesia through the tail vein. A tenminute static scan was acquired at 0, 10, 20, 30, 40, 50 min p.i. for serial images. To compare ⁶⁸Ga-DOTA-gluBBN with ¹⁸F-FDG, 3.7 MBq of each radio-compound was administered into PC-3 tumor mice and a thirty-minute static scan was acquired at 1 hr p.i. In the peritoneal metastasized model, ⁶⁸Ga-DOTA-gluBBN (3.7 MBq/100 μ l) was also injected into the tail vein, and a thirty-minute static scan was acquired at 1 hr p.i. Image analysis was performed using the Bioscan in Vivo Scope software and 0.9.0 AMIDE software.

Ex vivo autoradiography

A total of 3.7 MBq of 68 Ga-DOTA-gluBBN in 100 μ l of saline (n=3) was injected into both PC-3 tumor xenografted mice and the peritoneal metastasized model. For a blocking study, 50 μ g of unlabeled peptide was co-injected. At 1 hr p.i., the mice were sacrificed, and tumors in

both the right upper flank and peritoneal cavity were collected. The collected tumors were sliced and exposed to film at room temperature for overnight, and analyzed by Cyclone (PerkinElmer, USA).

Statistical analysis

The results are expressed as the mean \pm Standard Deviation (S.D.). A nonlinear regression analysis was performed on the *in vitro* data, and statistical analysis of in vivo studies utilized unpaired t test and was analyzed using GraphPad Prism 5.0 software. The level of significance was set at P<0.05.

Results

Radiolabeling of DOTA-gluBBN with ⁶⁸Ga

Previous studies have demonstrated the synthesis of DOTA-Lys (glucose)-4 aminobenzoyl-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2 (DOTA-gluBBN). The IC₅₀ value of DOTA-gluBBN was 4.67 nM, indicating its specificity and nanomolar affinity to GRPR [13]. In this study, the DOTA-gluBBN was labeled with ⁶⁸Ga which was purified and concentrated using NaCl-based ⁶⁸Ga eluate concentration method [14].

In TLC with sodium citrate, uncomplexed ⁶⁸Ga can be detected at the origin (possibly colloidal ⁶⁸Ga) or solvent front due to the formation of ⁶⁸Ga-citrate [15]. As shown in Figure 2A, the ⁶⁸Ga solution eluted from the ⁶⁸Ge/⁶⁸Ga generator contained 5~10% of impurities, and the volume was 4 ml which was not suitable for experimental purposes. The impurities were successfully removed to below 1%, and the volume was decreased to 0.5 ml by the NaCl method (Figure 2B). The concentrated ⁶⁸Ga was labeled with DOTA-gluBBN by high radiochemical purity (>98%), and further purification was not required (Figure 2C). A total of 0.22 μ g (1.23 \times 10⁻¹⁰ mole) of DOTA-gluBBN was routinely used per 1 MBq of the concentrated ⁶⁸Ga solution to obtain a radiochemical purity of over 98%, and the total preparation time from the elution to the quality control was below twenty-minutes.

Figure 3A shows that the incorporation yield of DOTA-gluBBN with a high amount of radioactivity, 555 MBq ⁶⁸Ga, was over 98%. In addition, after labeling, the radiochemical purity was maintained for 4 hours, which was a considerable amount of time for imaging using the 68-min short half-life of ⁶⁸Ga.

PC-3 tumor imaging using ⁶⁸Ga-DOTA-gluBBN

Nude mice bearing subcutaneous PC-3 tumor xenografts next to the right shoulder were scanned to 60 min post injection and serial PET-CT images were acquired (Figure 4). PC-3 tumors were clearly visualized in all images. In addition, ⁶⁸Ga-DOTA-gluBBN was rapidly excreted from the blood pool to the urinary bladder through the kidneys, and the highest radioactivity was observed in the urinary bladder at 50 to 60 min post-injection. The pancreas which is a GRPR-positive organ was not visualized because of the location of the cross-section, but it could be seen in Figure 5B.

To compare the imaging efficacy of ⁶⁸Ga-DOTA-gluBBN with ¹⁸F-FDG, 3.7 MBq of each radio-compound was administered and imaged at 1 hr post injection (Figure 5). The biodistribution pattern of two radio-peptide was different, but PC-3 tumors were successfully visualized using both radio-peptides. The tumor-to-muscle ratio of ⁶⁸Ga-DOTA-gluBBN was 1.7-fold higher than that of ¹⁸F-FDG (4.79 for ¹⁸F-FDG and 7.96 for ⁶⁸Ga-DOTA-gluBBN), and

Figure 3: Preparation of 555 MBq of ⁶⁸Ga-DOTA-gluBBN (A) and the stability at room temperature (B). The ⁶⁸Ga-DOTA-gluBBN was labeled with high radioactivity over 98%, and the radiochemical purity was maintained for 4 hours.

⁶⁸Ga-DOTA-gluBBN was excreted more rapidly from the blood pool than ¹⁸F-FDG.

The imaging efficacy of ⁶⁸Ga-DOTA-gluBBN was evaluated in the PC-3- peritoneal metastasized model. As shown in Figure 6A, intraperitoneal-injected PC-3 prostate cancer cells were diffusely metastasized into the whole peritoneal cavity. Twelve mice were injected, and all mice developed the metastasized PC-3 tumors of various sizes in the peritoneal cavity after 2 months. In Figure 6B, the radioactivity was also distributed diffusely in the whole peritoneal cavity similar to the gross observation; however, the specific metastases could not be visualized. To confirm the uptake of ⁶⁸Ga-DOTA-gluBBN in S.C.- and I.P.- induced PC-3 tumors, ex vivo autoradiography was performed (Supplement Figure 1). As a result, dark radioactivity was imaged in the subcutaneously xenografted tumor as well as the peritoneal metastasized PC-3 tumor. In addition, the uptake was blocked by coadministration of DOTA-gluBBN, indicating GRPR-specific uptake.

Discussion

Recent developments in cancer research have resulted in various therapeutic technologies. Because of the heterogeneity of patients and

tumors, there is an increasing demand for personalized medicine. With such a background, the development of a "theranostic" approach has gained prominence. Patients are selected through a diagnostic study to determine whether a patient will benefit from a therapy. Since the combination of 1311 for diagnostic imaging and therapy was established, many theranostic approaches have been performed. In particular, peptide receptor radionuclide therapy using ⁶⁸Ga/¹⁷⁷Lu-DOTA-TOC has been used as an effective and safe treatment option for patients suffering with advanced neuroendocrine tumors [12].

The purpose of this study was to develop ⁶⁸Ga-labeled DOTAgluBBN to image GRPR-expressing prostate tumors. With our previous report on ¹⁷⁷Lu-labeled DOTA-gluBBN for the treatment of GRPRexpressing prostate tumors [11], these results encourage DOTAgluBBN to be applied to the theranostic approach.

Several methods to concentrate eluted ⁶⁸Ga from a ⁶⁸Ge/⁶⁸Ga generator have been reported, and recently, Mueller et al. reported a NaCl method using a cationic exchange cartridge. This method utilizes relatively few reagents and comprises a minimal procedure with no subsequent purification steps, making it easy to label chelators with ⁶⁸Ga [14]. The percentage of impurities in the eluted

Page 4 of 6

Figure 5: Coronal (A, B) and transverse (C, D) images from subcutaneously PC-3 xenografted nude mice. Images were acquired 1 hr after the injection of 3.7 MBq of 18F-FDG (A, C) and ⁶⁸Ga-DOTA-gluBBN (B, D), respectively. The tumor-to-muscle ratios were 4.79 for ¹⁸F-FDG and 7.96 for ⁶⁸Ga-DOTA-gluBBN.

(A) and PET images of the mice after the injection of 3.7 MBq of ⁶⁸Ga-DOTAgluBBN (B). Diffused metastasis was observed and imaged in the whole peritoneal cavity.

⁶⁸Ga solution depended on the interval of elution. The longer the interval was, the more impurities were detected, representing 5~10% of the solution. Because the both impurities and ⁶⁸Ga-DOTAgluBBN remained at the origin by iTLC-SG with 0.5 M sodium citrate buffer, the elimination of impurities should be completed before radiolabeling. Purified ⁶⁸Ga was routinely labeled with DOTAgluBBN (incorporation yield >98%), and the total preparation time was below twenty minutes from the elution of ⁶⁸Ga solution to the evaluation of radiolabeling yield. Compared with other methods such as HPLC to examine the radiolabeling yield (>10 min), the iTLC-SG method required a shorter time (<10 min) to examine the radiochemical purity.

In addition, the radio of peptide and radioisotope was optimized for labeling. 0.22 μ g (1.23 × 10⁻¹⁰ mole) of the DOTA-gluBBN was used for labeling of 1 MBq of ⁶⁸Ga. Considering that the other DOTA-derivatives such as DOTA-TOC (0.33~0.54 μ g per 1 MBq), the optimized labeling

condition is useful to avoid the possible side effects caused by high levels of unlabeled peptide [16].

Many studies reported that bombesin derivatives are very radiosensitive in the absence of radiostabilizers. Degradation occurred both during and after radiolabeling, and in particular, the methionine residue of the peptide was found to be readily oxidized to its methionine sulfoxide form [17]. Asti et al. demonstrated that the presence of the oxidized form could lower the RCP of the preparation of ⁶⁸Ga-labeleled peptide around 80%. On the other hand, ascorbic acid dramatically enhanced the RCP of the radiotracers up to 98%, and presence of free ⁶⁸Ga³⁺ or ⁶⁸Ga-hydrolyzed products was not detected in any preparation [18]. Hence, ascorbic acid which was the most effective amino acid for radiostability was used in this study. However, the possibility of the preparation of the radiotracer because sulfoxide form cannot be detected with TLC.

In the previous report, high amounts of $^{177}\text{Lu-DOTA-gluBBN}$ were rapidly internalized and accumulated in a PC-3 tumor such that the %ID/g of the tumor was 12.42 \pm 2.15 at 1 hr p.i. The radio-peptide was quickly cleared from the blood, yielding tumor-to-blood ratios of 39.22 \pm 17.36 at 1 hr p.i. and 330.67 \pm 131.23 at 24 hr p.i. As a result, the radio-peptide significantly inhibited the PC-3 tumor growth (P<0.05) with no treatment-related toxicity in the pancreas and kidneys except for slight glomerulopathy [11].

In accordance with the results, ⁶⁸Ga-DOTA-gluBBN successfully targeted PC-3 prostate tumors in both the subcutaneous and peritoneal cavities. In the series images, ⁶⁸Ga-DOTA-gluBBN was already accumulated in the kidneys at 10 min p.i., and the radioactivity was excreted to the urinary bladder at 50 min p.i. The characteristics of fast blood clearance and excretion through the kidneys are advantageous as an imaging agent. Apart from the uptake of radioactivity in the peritoneal area, the PC-3 tumor in the upper body was clearly imaged with low background radioactivity. However, the uptake of radioactivity in the pancreas could hinder efforts to detect tumors in the peritoneal cavity.

Compared with ¹⁸F-FDG, ⁶⁸Ga-DOTA-gluBBN displayed higher tumor-to-muscle ratios in PC-3 tumor xenografted mice. Because there are pros and cons between them, they could be used in a mutually complementing manner. Nevertheless, ⁶⁸Ga-DOTA-gluBBN has a superior advantage for the treatment of prostate cancer because it can be used for therapy directly in the form of ¹⁷⁷Lu-DOTA-gluBBN in the theranostic approach.

Peritoneal carcinomatosis of prostate cancer is a type of rare cancer, although prostate cancer is likely to metastasize to bones. In the literature, peritoneal carcinomatosis is a rare finding in metastatic prostate cancer and is reported in its final stages with multiple metastases [19]. Due to the interest in developing a therapeutic technology for rare cancers recently, we focused on the peritoneal metastases of prostate cancer. Injected PC-3 prostate cancer cells induced diffuse solid tumors in the peritoneal cavity. The precise reasons are not known, but tumors were primarily localized in the pancreas, peritoneal wall, and mesentery. The tumors could not be visualized in PET imaging, but the ex-vivo autoradiography showed the tumor uptake of ⁶⁸Ga-DOTAgluBBN. It might be caused by the resolution as well as the uptake of the radiopeptide in other organs including pancreas. However, larger metastases in human might be visualized by the radio-peptide, which can contribute to the development of theranostics for the treatment of rare prostate cancer.

Based on the aforementioned in vivo results, ⁶⁸Ga-DOTA-gluBBN showed favorable pharmacokinetics, including rapid tumor targeting, rapid blood clearance, and fast renal excretion. These results suggest that ⁶⁸Ga-DOTA-gluBBN can be a promising diagnostic tool for GRPR-expressing prostate cancer.

If DOTA-gluBBN is applied to the theranostic approach, prostate cancer patients would be diagnosed by PET-CT using ⁶⁸Ga-DOTAgluBBN after taking a biopsy for the evaluation of GRPR expression. We previously reported that GRPR is also over-expressed in Korean prostate cancer patients, and there would be many appropriate patients for GRPR-targeted theranostics, including Koream patients [20]. In addition, the diagnosis of prostate cancer can be confirmed, and the tumor burden including metastases can also be assessed using 68Ga-DOTA-gluBBN for functional imaging. These procedures can provide essential information about GRPR density, which can select patients who are suitable for treatment using DOTA-gluBBN [12]. Next, the patients would begin the treatment using ¹⁷⁷Lu-DOTA-gluBBN [11], and the absorbed dose to the tumor and the toxicities to normal organs would be evaluated by SPECT-CT, which can make prognosis predictions. After treatment, the prognosis would be determined using ⁶⁸Ga-DOTA-gluBBN or ¹⁸F-FDG. In the future, we can overcome prostate cancer using the theranostic approach.

In conclusion, we reported on ⁶⁸Ga radiolabeling of DOTA-gluBBN and the imaging efficacy of ⁶⁸Ga-DOTA-gluBBN in subcutaneously and peritoneal metastasized PC-3 prostate tumors. ⁶⁸Ga-DOTAgluBBN exhibited favorable pharmacokinetics and exhibited specific and effective imaging of GRPR-expressing prostate tumors. These data suggest that a clinical study is needed to introduce the theranostic approach for prostate carcinoma patients.

Acknowledgments

This study was supported by the KAERI Major Project, Development of Radioisotope Production and Application Technology (525140-15).

References

- Xu B, Li X, Yin J, Liang C, Liu L, et al. (2015) Evaluation of ⁶⁸Ga-labeled MG7 antibody: A targeted probe for PET/CT imaging of gastric cancer. Sci Rep 5: 8626.
- 2. Jemal A, Siegel R, Ward E, Murray T, Xu J, et al. (2007) Cancer statistics, 2007. CA Cancer J Clin 57: 43-66.
- Jana S, Blaufox MD (2006) Nuclear medicine studies of the prostate, testes, and bladder. Semin Nucl Med 36: 51-72.
- 4. Ravizzini G, Turkbey B, Kurdziel K, Choyke PL (2009) New horizons in prostate cancer imaging. Eur J Radiol 70: 212-226.
- Honer M, Mu L, Stellfeld T, Graham K, Martic M, et al. (2011) ¹⁸F-labeled bombesin analog for specific and effective targeting of prostate tumors expressing gastrin-releasing peptide receptors. J Nucl Med 52: 270-278.
- Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, et al. (2008) Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 49: 318-326.

This article was originally published in a special issue, Natural productbased advance approaches for chronic diseases: Clinical and Preclinical Devel-opment handled by Editor(s). Dr. Sahdeo Prasad, The University of Texas, USA. Dr. Amit Kumar Tyagi, University of Texas. USA, Dr. Maryam Ahmed, Appalachian State University, USA

- Velikyan I (2013) Prospective of ⁶⁸Ga-radiopharmaceutical development. Theranostics 4: 47-80.
- Kähkönen E, Jambor I, Kemppainen J, Lehtiö K, Grönroos TJ, et al. (2013) In vivo imaging of prostate cancer using [⁵⁸Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res 19: 5434-5443.
- Dimitrakopoulou-Strauss A, Seiz M, Tuettenberg J, Schmieder K, Eisenhut M, et al. (2011) Pharmacokinetic studies of ⁶⁸Ga-labeled Bombesin (Ga-BZH3) and ¹⁸F-FDG PET in patients with recurrent gliomas and comparison to grading: preliminary results. Clin Nucl Med 36: 101-108.
- Hofmann M, Machtens S, Stief C, Langer F, Boerner AR, et al. (2004) Feasibility of ⁶⁸Ga-DOTABOM PET in prostate carcinoma patients. Eur J Nucl Med Mol Imaging 31: S253.
- 11. Lim JC, Cho EH, Kim JJ, Choi SM, Lee SY, et al. (2015) Preclinical pharmacokinetic, biodistribution, imaging and therapeutic efficacy of ¹⁷⁷Lu-Labeled glycated bombesin analogue for gastrin-releasing peptide receptorpositive prostate tumor targeting. Nucl Med Biol 42: 234-241.
- Werner RA, Bluemel C, Allen-Auerbach MS, Higuchi T, Herrmann K (2015) 68Gallium- and 90Yttrium-/ ¹⁷⁷Lutetium: "theranostic twins" for diagnosis and treatment of NETs. Ann Nucl Med 29: 1-7.
- 13. Lim JC, Choi SM, Cho EH, Kim JJ (2013) Novel Bombesin Analogues Conjugated with DOTA-Ala(SO₃H)-4 aminobenzoic acid and DOTA-Lys(glucose)-4 aminobenzoic acid : Synthesis, Radiolabeling, and Gastrin Releasing Peptide Receptor Binding Affinity. Journal of Radiation Industry 7: 191-200.
- 14. Mueller D, Klette I, Baum RP, Gottschaldt M, Schultz MK, et al. (2012) Simplified NaCl based ⁶⁸Ga concentration and labeling procedure for rapid synthesis of ⁶⁸Ga radiopharmaceuticals in high radiochemical purity. Bioconjug Chem 23: 1712-1717.
- Fellner M, Biesalski B, Bausbacher N, Kubícek V, Hermann P, et al. (2012) ⁶⁸Ga-BPAMD: PET-imaging of bone metastases with a generator based positron emitter. Nucl Med Biol 39: 993-999.
- Archana M, Usha P, Rubel C, Haladhar DS, Ashutosh D (2014) Single vial kit formulation for preparation of PET radiopharmaceutical: ⁶⁸Ga-DOTA-TOC. J Radioanal Nucl Chem 302: 1253-1258.
- Chen J, Linder KE, Cagnolini A, Metcalfe E, Raju N, et al. (2008) Synthesis, stabilization and formulation of [¹⁷⁷Lu]Lu-AMBA, a systemic radiotherapeutic agent for Gastrin Releasing Peptide receptor positive tumors. Appl Radiat Isot 66: 497-505.
- Asti M, Iori M, Capponi PC, Atti G, Rubagotti S, et al. (2014) Influence of different chelators on the radiochemical properties of a ⁶⁸Gallium labelled bombesin analogue. Nucl Med Biol 41: 24-35.
- Brehmer B, Makris A, Wellmann A, Jakse G (2007) Solitary peritoneal carcinomatosis in prostate cancer. Aktuelle Urol 38: 408-409.
- 20. Lim JC, Cho EH, Kim JJ, Choi SM, Lee S, et al. (2015) Biological evaluation of ¹⁷⁷Lu-labeled DOTA-Ala(SO₃H)-Aminooctanoyl-GIn-Trp-Ala-Val-N methyl Gly-His-Statine-Leu-NH2 for gastrin-releasing peptide receptor-positive prostate tumor targeting. Nucl Med Biol 42: 131-136.