

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 117

Abstract

Grammar Induction is the process of learning grammar from training data of the positive

(S+) and negative (S-) strings of the language. The paper discusses the approach to develop a

library for inducing the context free grammar using Genetic Algorithms. Genetic Algorithm

used for the induction library produces successive generations of individuals‟ chromosome,

computes their fitness value in every step of generation and finally select the best out of the total

number of generation or when the termination condition (threshold) is meet. The library also

deals with the issues in implementation of the algorithm, chromosome representation,

evaluation, selection and replacement strategy and the genetic operators for crossover and

mutation. The paper also addresses the solution of the problem like useless production, left

recursion, left factor, and unit production etc. The library has been implemented and the results

obtained for the set of various problems like balanced parenthesis, two symbol palindromes and

equal number of 0s and 1s are presented.

Keywords: Context Free Grammar, Genetic Algorithms, Grammatical Inference, Machine

Learning, Induction Library etc.

1. Introduction

 The field which has been used as a problem solving technique is known as

Evolutionary techniques, which is similar to machine learning recombination methods. There

are many flavors of evolutionary computing approach available but most evolutionary

computing approaches hold in common. These approaches try and find a solution to a

particular problem, by recombining and mutating the individuals to get the possible solution

[1]. Author uses some encoding or decoding technique known as mapping the data to obtain

the solution. At the initial stage, we generate the population randomly. Fitness has been

assigned to each individual for the verification and validation of the problem being solved.

Since, author has used the concept of Genetic Algorithm, which works on selection, crossover

and mutation operators. One can apply the concept of replacement, which is applicable

usually by generations of new individuals.

This paper presents the CFG Induction Library Using Java to address various issues of

context free grammar induction using GA. In this paper author has given the complete library

Developing Genetic Algorithm Library Using Java for CFG Induction

N.S. Choubey, Hari Mohan Pandey

Computer Engineering Department, MPSTME, Shirpur (MS), India

Email: nschoubey@gmail.com

, hari04top@yahoo.co.in

M.U. Kharat

PLIT&M, Buldana(MS), India

Email: mukharat@rediffmail.com

mailto:nschoubey@gmail.com
mailto:hari04top@yahoo.co.in
mailto:mukharat@rediffmail.com

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 118

to induce CFG using set of corpus using crossover and mutation operators over the generated

chromosome.

The organization of paper is as follows: the section II gives the detailed description

about the problem definition, section III is given to understand the proposed method, section

IV covers the detailed about the implementation methodology author has used. Section V is

given for the experimental setup which includes the test data which authors are using for the

present work, GA parameters and the results. The last section covers the conclusion and

future direction of the present work done.

2. Problem Definition

 In this paper authors are presenting an induction library to inference the Context Free

Grammar using GAs. The learning technique author discussed so far is with informant,

where a language acceptor is constructed so as to accept all positive example (S ) and

reject all the negative examples (S ).

In Peter Wyard [2] gave the idea of different grammatical representations. After

completion of experiments we will get various production rules in the form of Context

Free Grammar. The CFG which author will get after experiments will be in Bakus Naur

Form.

In formal language theory, a context free grammar is a grammar in which every

production rule is of the form:

 

Where,

  : A single non-terminal symbol and  : A string of terminals and/or

non-terminals

3. Proposed Method

Author proposes a genetic algorithm, with some assistance can solve the problem. To

induce the CFG authors will train on set of samples. Over time, the set of sentences will

increase, which also increases complexity of the system. By using GAs author will create

the random population of Grammar using grammar designing steps. Then computing the

fitness of the grammar in the whole population and get the best from the whole set. The

best individual with the fitness greater than the required threshold is found or the given

number of generation is completed. After that author will use the operator crossover and

mutation to create new population and note down the crossover and mutation rate by using

appropriate method. Again calculate the fitness of the new constructed population.

Finally, merge the population and update the best individual by using the correct

replacement method.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 119

4. Implementation Methodology

 In this section, author describes the methods used to induce a grammar for set

of sentences. Although the approach is based on the idea of a genetic algorithm as

originally presented in [3] and latter on in [4], in this paper author has made a few

significant adaptations that make the process easier for the grammar induction.

4.1 Grammar Induction Process

 The process of learning a grammar from set of samples is known as Grammar

Induction or Language Learning. Various algorithms are given for learning regular

language. These algorithms are nothing but used for largest class of languages, which can

be efficiently learned. This paper focuses on grammatical inference i.e. inference of formal

languages such as of the Chomsky hierarchy from positive and negative sample strings. In

[2] Wyard addressed the different representations and experimental results shows that an

evolutionary algorithm using Context Free Grammar (BNF). Wyard [2] also explore the

concepts and various issues such as the representation of the grammars, and method for the

evaluation of the chromosome.

Context free grammar learning requires more information about a set of positive and

negative sample for example a set of skeleton parse trees, which makes them a more

challenging task to induce grammar. In a broader sense, a learner has access to some

sequential or structured data and is asked to return a grammar that should in some way

explain such data. Parsing according to a grammar amounts to assigning one or more

structures to a given sentence of the language the grammar has been defined. Author will

surely get ambiguous grammar if there are sentences with more than one structure, as

generally used in case of natural language. Parsing can be used as a search process that

looks for correct structures for the input sentence. If author can establish some kind of

preference among the set of correct structures, the process can be regarded as an optimize

one. The idea given here suggests considering evolutionary programming techniques,

which are acknowledged to be practical search and optimization methods [5].

There are verities of practical applications of Grammar Induction one can see outside

the field of theoretical linguistics, such as structural pattern recognition [6] [7] (in both

visual images and more general patterns), information retrieval, automatic computer

program synthesis, bioinformatics etc. Syntactic processing has always been paramount to

a wide range of applications, includes machine translation, speech recognition and the like.

Hence, natural language syntax has always been one of the most active research areas in

the field of language technology [6].

All of the typical pitfalls in language, for example ambiguity, recursion, and long

distance dependencies are prominent problems in describing syntax in a computational

context. The field of evolutionary computing, which we are applying is a problem solving

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 120

techniques. It is similar in intent to the Machine Learning recombination methods. Most

evolutionary computing approaches hold in common that they find solution to a particular

problem by recombining and mutation individuals in a society of possible solutions. This

provides an attractive technique for problems involving large, complicated and

non-linearly divisible search spaces.

4.2 Induction Library Development

 To implement the “CFG Induction Library” author requires a proper support from

the operating system to control the implementation of java. The control over the classes

and methods used requires a proper communication through the system call, which should

be supported by java virtual machine. The approach used to develop the induction library

is explained below:

4.2.1 Process of Data Mapping

 The process of mapping plays a very important role in language learning

process. It is nothing but a basis for structuring the chromosomes. Suppose V be any set of

terminals or non-terminal and let B be the equivalent binary for the

terminals/non-terminals. Then to get a sequential structured chromosome in the form of

random sequence of 0‟s and 1‟s author has to use a function, which will map the element of

set B to element of set V. We can represent it as:

:f B V

Where, f be the function used to map sequential block of 0‟s and 1‟s to terminals or non

terminals.

To decoding the grammar maps the random chromosome according to bit sequence

based on the number of terminals available in the given sample. Here, for the induction

library, we have used mapping from bit representation to symbolic representation symbol

in 3-bit, 4-bit respectively.

4.2.2 Developing Chromosome Structure

 In the field Genetic algorithm the selection of chromosome structure is an important

decision. As far as grammar induction is cornered, the parameters required by the system

is unknown, therefore the chromosome will be of variable length. The variable length can

make the operation of the crossover operator less straightforward than before. For the

induction library there are two approaches chosen by the author.

1. Generate random string consisting of 0‟s and 1‟s of a specific length.

2. Then partitioned the string in to the sequential blocks of equal length to get the desired

number of production rules by mapping them to the terminals and non-terminals.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 121

Algorithm-1: Steps used for construction of grammar from each individual

chromosome

1. Initialize string of random 0‟s and 1‟s

2. Chromosome generate random sequence of 0‟s and 1‟s up to given size.

3. CFG rule extraction using Backus Naur form and chromosome.

4. Eliminate left recursion

5. Remove multiple production rules from the same set of terminals using rules for left

factoring.

6. Stop.

After applying the above given approach author will get the production with variable

length. Then the resulted productions are treated as ordinary methods such as left factoring

and left-recursion removal in order to get the resultant production. To understand the

working of the algorithm-1 and how to map the data let us consider an example:

Table 1: Mapping and Generating Equivalent Symbol

S.N. Test Data Binary Equivalent

1. S 000

2. A 001

3. B 010

4. C 011

5. a 100

6. b 101

Now, select the chromosome (length =120) as:

01010100011010001000000000001000101101000111101001111111001000010001011

0100011111100110111011110100111100000000111101111

Sequentially partitioned the chromosome into block of 3-bit as:

010|101|000|110|100|010|000|000|000|010|001|011|010|001|111|010|011|111|110|010|00

0|100|010|110|100|011|111|100|110|111|011|110|100|111|100|000|000|111|101|111|

Apply the mapping given in table-1

010=B|101=b|000=S|110=?|100=a|010=B|000=S|000=S|000=S|010=B|001=A|011=C|01

0=B|001=A|111=?|010=B|011=C|111=?|110=?|010=B|000=S|100=a|010=B|110=?|100=a

|011=C|111=?|100=a|110=?|111=?|011=C|110=?|100=a|111=?|100=a|000=S|000=S|111=

?|101=b|111=?|

**Symbol “|” represents wall.

Therefore, equivalent symbolic chromosome (length=40) is:

BbS?aBSSSBACBA?BC??BSaB?aC?a??C?a?aSS?b

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 122

The method which author has discussed so far, for structuring chromosome and mapping

the chromosome into symbolic form known as sequential structuring of chromosome [8].

4.2.3 Developing Parser

 Author has implemented a parser for the “Induction Library” where authors are

dealing with the problems like removing useless production rules, removing unit

productions, removing non-required epsilon, dealing with problem called as left factor and

left recursion etc. Induction library contains a class “Check_Parser”. The parser

Check_Parser basically works on Recursive Decent Parsing technique. This parser not

only just deal the problem given in this section but also it checks the correctness of the

chromosome by showing the message chromosome is accepted or not accepted. For

checking the validity of the chromosome we will pass the chromosome as input and then

we will call a method “print_CFG” to extract production rules from the chromosome by

applying the methodology given in the previous section.

For the chromosome we have selected in our example we will get the following rules:

Total number of rules: 3

S->aaM M->SM M->?

4.2.4 GA Approach for CFG Induction Library

 This section describes the procedure used for Grammar Induction from a set of

corpus constructed from a set of positive and negative string for the grammar to be

constructed. Here fitness function is based on the nature of the string supplied in the

corpus. Corpus length is taken as 50 which include positive strings and negative strings.

Acceptance and rejection of the strings in the given corpus gives the fitness of an

individual grammar [9]. Positive weight is added for every acceptance of the positive

string and rejection of every negative string whereas penalty of the positive weight is given

for every rejection of positive string and acceptance of every negative string. An additional

factor of the maximum number of expected rules is used to control the number of rules

required in the resultant grammar.

Algorithm-2: CFG Induction using genetic algorithm

Input: random sequence of 0‟s and 1‟s up to size of chromosomes (Array p).

Output: the optimal search time (t) and the set of grammar rule (R).

Fitness function: ((n (AP) +n (RN))-((AN) + (RP))*PW+PW*CL-(PW-MR)

Where,

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 123

1. Input (n, p)

2. Input (popsize, maxgen, poss_cross, poss, mut, prnum)

3. Population ← random population of the grammar (popsize)

4. Fitness ← ((n (PS) +n (NS))-((PN) + (PP))*PW+PW*CL) - (PW-MR)

5. Repeated step 5 to 8

 Either: Best individual with > required threshold

 OR : Number of generation completed

6. New Population ← population after crossover and mutation (figure-1)

7. Fitness ← Fitness of newly construed individual

8. Merge both populations

9. Update (best individual in the population)

10. Display (t)

11. Stop.

Fig.1: a. Crossover and b. Mutation methods used [10]

4.2.5 Java Classes Used

 This section describes all the classes developed for inducing Context Free

Grammar from the set of sample set. There are total five different classes has been

developed by author for the CFG induction. The name of each class is given in the table

below with small description of each.

CL Corpus Length PW Positive Weight

PS Positive String NS Negative String

PP Penalty of Positive String PN Penalty of Negative String

MR Addition factor of the maximum

number of expected rule

P1 0 1 1 1 0 0 1 1

Cut P11 P12 P13

 1 1 1 1 1 0 1 0

P2 P21 P22 P23

 

CH1 1 1 1 0 1 1 0 1

 P22 P13 P11

CH2 1 1 0 0 1 0 1 1

 P12 P23 P21
(a)

P1 0 1 1 1 0 0 1 1

Random

Mask
1 0 1 0 1 0 1 0

 * *  * *

CH1 1 1 0 1 1 0 0 1

* Bits are inverted for „1‟ in the random mask.
(b)

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 124

Table-2: Java Classes Used for CFG Induction Library

S.N. Classes Used Description

1. SYM_TAB Declare variables in the form of symbols and binary.

2. VAR_TER Used to represents the terminals and non-terminals in binary 3-bit or 4-bit

representation

3 Chromosome Used to get random chromosomes

4. Check_Parser Used to check the correctness of the grammar for a set of strings.

5. Gen_Ope This class basically deals with operations of genetic algorithm which we have

declared earlier. In this class we have applied the operators called as crossover and

mutation.

5. Experimental Setup

To develop Context Free Grammar Induction library author has selected java. The

experiment is carried out to collect result of first ten successful run for the grammar

induction of various languages over the combination of crossover and mutation operators.

The work done in this paper can run on sequential as well as parallel environments. Java is

one of the best solutions for this. There are many parallel programming instruction

presents in java which author can use for the parallel implementation of GAs. Java

provides the facilities of machine independent method of distributing the code to perform

the computation on different machine. To perform the experiment we have used JDK 1.6

on Intel Core
TM

2 CPU with 2.66 GHZ and 1 GB RAM. Other parameters which also play

an important role in the experimental process are explained below.

i. Test Data: To understand the working of Genetic Algorithm, it is tested on various

languages. The problem author has selected are common test cases for

effectiveness of grammatical inference methods. The test languages are given in

the table as follows:

Table 3: Test Language

L-id Description

L-1 Balanced parentheses problem

L-2 Two symbol palindrome over {a, b}.

L-3 (10)* over {0,1}

The problem which author has selected for the implementation is based on the set of

positive and negative strings.

ii. GA Parameters: The Genetic Algorithm parameters we have selected for the

implementation of the problem are given in the table below:

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 125

Table 4: Parameters for Genetic Algorithm

S.N. Parameters Size/Value

1. Population Size 50

2. Chromosome Size 240

3. Corpus size 50

3. Maximum Generation 10

4. Probability of Crossover 0.9

5. Probability of Mutation 0.8

6. Selection Strategy Roulette Wheel Selection

iii. Results

Language-1: Balanced Parenthesis Problem

Table-5: Showing the Generation of Chromosomes

Generation Worst Average Best

1 490 514.78 539

2 507 518.09 481

3 512 519.19 851

4 514 520.20 992

5 515 521.05 992

6 515 525.63 992

7 515 530.71 992

8 515 538.33 992

9 532 554.68 1013

Best Chromosome is

01100101001101011000011111111110011100011001001110010000110011011010110

00010000100101110010110110101100101000010010111000001000011010000110101

11001111100001110111000111111110001000

The Best over generations is

S->? S->(A)S A->S

Total number of rules: 3

Its fitness is 1013

Total time required in milliseconds : 116625

 Days : 0

Hours : 0

Minutes : 1

Seconds : 56

 Mili-Seconds : 625

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 126

Language-2: Two Symbol Palindrome over {a, b}

Table-6: Showing the Generation of Chromosomes

Generation Worst Average Best

1 493 510.22 531

2 513 515.3 534

3 515 517.94 590

4 515 521.76 590

5 515 533.04 772

6 530 554.08 911

7 533 563.20 911

8 535 610.74 950

9 590 644.34 950

10 590 682.42 1013

Best Chromosome is

00100110011000001010101000101000001010100010100010011111110101000010000

01000100111010000010100100001100100010000000110100101000001111100100010

01010000010101000100100011010101010100

The Best over generations is

S->? S->aSa S->bSb

Total number of rules: 3

Its fitness is 1013

Total time required in milliseconds : 203344

 Days : 0

Hours : 0

Minutes : 3

Seconds : 23

 Mili-Seconds : 344

Language-3: (10)* over {0, 1}

Table-7: Showing the Generation of Chromosomes

Generation Worst Average Best

1 350 504.58 554

2 501 512.87 554

3 509 516.57 554

4 515 518.74 554

5 515 521.43 554

6 515 526.33 572

7 515 546.61 970

8 532 571.71 970

9 554 592.23 970

10 554 626.38 1014

Best Chromosome is

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 127

00100111011010000001000111010010100001110100011101101001110011111000000

00010001011101000000111010000111100010000000110101011010000100010001110

11011000000101001011000000110111111110

The Best over generations is

S->? S->10S

Total number of rules: 2

Its fitness is 1014
Total time required in milliseconds : 89639

 Days : 0

Hours : 0

Minutes : 1

Seconds : 29

 Mili-Seconds : 639

Now, on the basis of the results authors have achieved for the languages L1 to L3 author

can represent the summary of the result. The result set is given in the table-8 below:

Table-8: Resultant Grammar with Fitness Value

L-id Gen FV EG

L1 09 1013 S->?, S->(A)S , S->S

L2 10 1013 S->?, S->aSa , S->bSb

L3 10 1014 S->?, S->10S

L-id: Language-id, FV: Fitness Value

G: Generation EG: Equivalent Grammar

Note: Epsilon is denoted by “?”

The grammars shown in the table-8 are the grammar equivalent to the chromosome shown

above. The grammar with fitness value shown in table-8 will accept all the positive

examples and rejects the negative example as considered for the experiment. The grammar

out of 10 generation (or threshold reached) is represented as <V, T, P, S> where V is finite

set of Variables, T is finite set of Terminals, P is finite set of Production rules and S is a

starting Variable.

6. Conclusion and Future Enhancement

 In this paper author has given the detailed idea for grammar induction using genetic

algorithm. The contribution of the work is as follows:

a) Basic concepts of Inducing Grammars.

b) Mapping methodology and structuring chromosome.

c) CFG learning technique from the chromosome.

d) Solution of various problems with fitness value and time.

e) Java‟s classes used for inducing the CFG from the set of corpus (Positive

and Negative)

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2, No 1 (January 2011) ©IJoAT 128

As a future work we can do the following:

a) Dealing with the problem of local optimum which we are facing during the

implementation of the library.

b) Implementing the library on different topologies.

c) Similar approach can be applied Natural Language Grammar Induction

process.

d) Similar approach can be applicable for parallel implementation of GAs.

References

[1] Afra Zomorodian, Context-free language induction by evolution of deterministic pushdown automata using

genetic programming. In E. S. Siegel and J. R. Koza, editors, Working Notes for the AAAI Symposium on

Genetic Programming, pages 127-133, MIT, Cambridge, MA, USA, 10--12 November 1995. AAAI.

[2] Wyard, P., Representational Issues for Context-Free Grammar Induction Using Genetic Algorithm in

Proceedings of the 2nd International Colloquim on Grammatical Inference and Applications, Lecture Notes

in Artificial Intelligence, Vol 862, pp. 222-235, 1994.

[3] J. H. Holland, Adaptation in natural and artificial system, University of Michigan Press, Ann Arbor, 1975.

[4] D.E. Goldberg, Genetic Algorithms in search, optimization, and machine learning, Addison-Wesley,

Boston, 1989.

[5] F. Javed, B. R. Bryant, M.Crepinek, Mernik, Sprague, “Context-free Grammar Induction using Genetic

Programming”, ACMSE, Huntzville, 2004.

[6] Evolutionary Computing as a Tool for Grammar Development, Guy De Pauw, CNTS – Language

Technology Group, UIA – University of Antwerp, Antwerp – Belgium, E. Cant´u-Paz et al. (Eds.): GECCO

2003, LNCS 2723, pp. 549–560, 2003.,c_Springer-Verlag Berlin Heidelberg 2003.

[7] Genetic Programming with Incremental Learning for Grammatical Inference Ernesto Rodrigues and Heitor

Silvério Lopes, Graduate Program in Electrical Engineering and Computer Science, Federal University of

Technology – Paraná, Av. 7 de setembro, 3165 80230-901, Curitiba, Brazil.

[8] Sequential Structuring Element for CFG Induction Using Genetic Algorithm, Dr. N.S. Choubey, Head CE

Department, MPSTME, M.U. Kharat, Institute of Engineering, Bhujbal Knowledge City Nashik, India.

[9] Choubey N.S. and M.U. Kharat, 2009. “Grammar Induction and Genetic Algorithm: An overview “ Pacific

Journal of Science & Technology 10(2): 884-888

[10] Choubey N.S., Kharat M.U. “Stochastic Mutation for Grammar Induction Using Genetic Algorithm,

Electronic Computer Technology (ICECT), 2010 International Conference. pp. 142-146, 7-10 May 2010.

[11] Kharat MU, N.S. Choubey, “Sequential Structuring element for CFG induction using genetic algorithm”,

International journal of computer application, 1(1) 12-16, February 2010, published by foundation of

computer science.

